login
A242954
a(n) = Product_{i=1..n} A234957(i).
4
1, 1, 1, 1, 4, 4, 4, 4, 16, 16, 16, 16, 64, 64, 64, 64, 1024, 1024, 1024, 1024, 4096, 4096, 4096, 4096, 16384, 16384, 16384, 16384, 65536, 65536, 65536, 65536, 1048576, 1048576, 1048576, 1048576, 4194304, 4194304, 4194304, 4194304, 16777216, 16777216, 16777216
OFFSET
0,5
COMMENTS
This is the generalized factorial for A234957.
a(0) = 1 as it represents the empty product.
LINKS
Tyler Ball, Tom Edgar, and Daniel Juda, Dominance Orders, Generalized Binomial Coefficients, and Kummer's Theorem, Mathematics Magazine, Vol. 87, No. 2, April 2014, pp. 135-143.
FORMULA
a(n) = Product_{i=1..n} A234957(i).
a(n) = 4^(A054893(n)). - Vaclav Kotesovec, May 28 2014
PROG
(Sage)
S=[0]+[4^valuation(i, 4) for i in [1..100]]
[prod(S[1:i+1]) for i in [0..99]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Tom Edgar, May 27 2014
STATUS
approved