login
A242825
Minimum positive value of n^3 - x^3 - y^3 for positive integers x,y
1
6, 11, 10, 34, 27, 2, 44, 1, 55, 90, 54, 126, 16, 119, 21, 88, 8, 19, 141, 54, 56, 71, 106, 64, 69, 27, 72, 55, 135, 47, 168, 161, 137, 79, 64, 309, 123, 332, 307, 8, 254, 83, 448, 109, 27, 519, 567, 2, 259, 107, 225, 269, 216, 118, 90, 316, 164, 503, 1015, 333, 181, 47, 857, 6, 704, 63, 385, 253, 343, 604, 457, 144
OFFSET
2,1
COMMENTS
The case p=3 of Fermat's Last Theorem says there is no positive integer solution to n^3 - x^3 - y^3 = 0.
LINKS
EXAMPLE
a(7) = 2 because 7^3 - 5^3 - 6^3 = 2 and there is no solution to 0 <= 7^3 - x^3 - y^3 <= 1
MAPLE
N:= 1000: # to get up to a(N)
C:= convert({seq(seq(x^3 + y^3, x = 1 .. y), y = 1 .. N)}, list):
for i from 2 to N do
a[i]:= i^3 - C[ListTools:-BinaryPlace(C, i^3)]
od:
seq(a[i], i=2..N); # Robert Israel, May 26 2014
CROSSREFS
Sequence in context: A134012 A103704 A135998 * A358068 A276136 A152089
KEYWORD
nonn
AUTHOR
Robert Israel, May 26 2014
STATUS
approved