login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

G.f. satisfies: A(x) = G(x/A(x)) such that A(x*G(x)) = G(x) = Sum_{n>=0} (n+1)^(n+1)*x^n.
1

%I #5 May 21 2014 22:46:36

%S 1,4,11,60,611,8632,151538,3132140,73883667,1949844168,56785116742,

%T 1806695366616,62314198956510,2315470815127792,92214156916779444,

%U 3918743752606940812,177018691811732542595,8471087431826716955880,428141645771934036086942,22791557465710675500959688

%N G.f. satisfies: A(x) = G(x/A(x)) such that A(x*G(x)) = G(x) = Sum_{n>=0} (n+1)^(n+1)*x^n.

%F G.f. satisfies: [x^n] A(x)^(n+1) = (n+1)^(n+2).

%F G.f.: A(x) = x/Series_Reversion(x*G(x)) where G(x) = Sum_{n>=0} (n+1)^(n+1)*x^n.

%e G.f.: A(x) = 1 + 4*x + 11*x^2 + 60*x^3 + 611*x^4 + 8632*x^5 + 151538*x^6 +...

%e such that A(x*G(x)) = G(x) where:

%e G(x) = 1 + 4*x + 27*x^2 + 256*x^3 + 3125*x^4 +...+ (n+1)^(n+1)*x^n +...

%e also, A(x) = G(x/A(x)):

%e A(x) = 1 + 4*x/A(x) + 27*x^2/A(x)^2 + 256*x^3/A(x)^3 + 3125*x^4/A(x)^4 +...+ (n+1)^(n+1)*x^n/A(x)^n +...

%e If we form a table of coefficients of x^k in A(x)^n like so:

%e [1, 4, 11, 60, 611, 8632, 151538, 3132140, ...];

%e [1, 8, 38, 208, 1823, 23472, 389174, 7739808, ...];

%e [1, 12, 81, 508, 4164, 48852, 759407, 14463624, ...];

%e [1, 16, 140, 1024, 8418, 91920, 1335712, 24248640, ...];

%e [1, 20, 215, 1820, 15625, 163664, 2232620, 38498580, ...];

%e [1, 24, 306, 2960, 27081, 279936, 3623894, 59297664, ...];

%e [1, 28, 413, 4508, 44338, 462476, 5764801, 89716400, ...];

%e [1, 32, 536, 6528, 69204, 739936, 9018480, 134217728, ...]; ...

%e then the main diagonal forms the sequence A007778:

%e [1, 8, 81, 1024, 15625, 279936, 5764801, 134217728, ..., (n+1)^(n+2), ...].

%o (PARI) {a(n)=polcoeff(x/serreverse(x*sum(m=0, n+1, (m+1)^(m+1)*x^m)+x^2*O(x^n)), n)}

%o for(n=0,20,print1(a(n),", "))

%Y Cf. A180749, A007778.

%K nonn

%O 0,2

%A _Paul D. Hanna_, May 21 2014