The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A242588 Decimal expansion of the expected reciprocal Euclidean distance between two random points in the unit cube. 1
 1, 8, 8, 2, 3, 1, 2, 6, 4, 4, 3, 8, 9, 6, 6, 0, 1, 6, 0, 1, 0, 5, 6, 0, 0, 8, 3, 8, 8, 6, 8, 3, 6, 7, 5, 8, 7, 8, 5, 2, 4, 6, 2, 8, 8, 0, 3, 1, 0, 7, 0, 7, 9, 6, 0, 5, 5, 2, 9, 3, 2, 3, 1, 4, 5, 7, 7, 2, 1, 0, 3, 7, 9, 6, 1, 0, 6, 0, 3, 5, 8, 1, 2, 7, 2, 3, 9, 9, 9, 9, 1, 4, 8, 4, 5, 6, 2, 0, 4, 2 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.1, p. 480. LINKS D. H. Bailey, J. M. Borwein, R. E. Crandall, Advances in the theory of box integrals Math. Comp. 79 (2010), 1839-1866, p. 24. Eric Weisstein's MathWorld, Cube Point Picking FORMULA Integral over a unit cube of 1/sqrt((r1-q1)^2 + (r2-q2)^2 + (r3-q3)^2) dr1 dr2 dr3 dq1 dq2 dq3 = 2*(1/5*(sqrt(2) + 1 - 2*sqrt(3)) - log((sqrt(2) - 1)*(2 - sqrt(3))) - Pi/3). EXAMPLE 1.88231264438966016010560083886836758785246288... MATHEMATICA 2*(1/5*(Sqrt[2] + 1 - 2*Sqrt[3]) - Log[(Sqrt[2] - 1)*(2 - Sqrt[3])] - Pi/3) // RealDigits[#, 10, 100]& // First CROSSREFS Cf. A073012, A097047, A135691. Sequence in context: A199597 A197848 A224875 * A105193 A178678 A217459 Adjacent sequences: A242585 A242586 A242587 * A242589 A242590 A242591 KEYWORD nonn,cons AUTHOR Jean-François Alcover, May 20 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 14:15 EST 2022. Contains 358510 sequences. (Running on oeis4.)