The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A242586 Expansion of 1/(2*sqrt(1-x))*(1/sqrt(1-x)+1/(sqrt(1-5*x))). 2
 1, 2, 6, 23, 98, 437, 1995, 9242, 43258, 204053, 968441, 4619012, 22120631, 106300508, 512321438, 2475395303, 11986728458, 58156146653, 282640193313, 1375737276788, 6705522150973, 32724071280518, 159878425878848 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Binomial transform of A088218. LINKS Harvey P. Dale, Table of n, a(n) for n = 0..1000 FORMULA a(n) = Sum_{j = 0..n} binomial(2*j-1,j)*binomial(n,j). G.f. A(x) = x*F'(x)/F(x), where F(x) is g.f. of A007317. a(n) = T(2*n,n) for n>0, where T(n,k) is triangle of A105477. a(n) = hypergeom([1/2,-n],[1],-4)/2 + 1/2. - Peter Luschny, May 18 2014 D-finite with recurrence: n*a(n) + (-7*n+4)*a(n-1) + (11*n-14)*a(n-2) + 5*(-n+2)*a(n-3) = 0. - R. J. Mathar, May 23 2014 2*a(n) = 1 + A026375(n). - R. J. Mathar, Jan 26 2020 From Peter Bala, Jan 09 2022: (Start) a(n) = [x^n] ( x + 1/(1 - x) )^n. a(0) = 1, a(1) = 2 and n*a(n) = 3*(2*n-1)*a(n-1) - 5*(n-1)*a(n-2) - 1 for n >= 2. The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. (End) MAPLE a := n -> hypergeom([1/2, -n], [1], -4)/2 + 1/2; seq(round(evalf(a(n), 32)), n=0..22); # Peter Luschny, May 18 2014 MATHEMATICA CoefficientList[Series[1/(2Sqrt[1-x]) (1/Sqrt[1-x]+1/Sqrt[1-5x]), {x, 0, 30}], x] (* Harvey P. Dale, Mar 19 2020 *) PROG (Maxima) a(n):=sum(binomial(2*j-1, j)*binomial(n, j), j, 0, n); CROSSREFS Cf. A007317, A088218, A105477, A110166, A246437. Sequence in context: A150298 A280768 A278301 * A196018 A009449 A233106 Adjacent sequences: A242583 A242584 A242585 * A242587 A242588 A242589 KEYWORD nonn,easy AUTHOR Vladimir Kruchinin, May 18 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 20:52 EST 2022. Contains 358543 sequences. (Running on oeis4.)