

A242533


Number of cyclic arrangements of S={1,2,...,2n} such that the difference of any two neighbors is coprime to their sum.


16



1, 1, 2, 36, 288, 3888, 200448, 4257792, 139511808, 11813990400, 532754620416
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

a(n)=NPC(2n;S;P) is the count of all neighborproperty cycles for a specific set S of 2n elements and a specific pairproperty P. For more details, see the link and A242519.
Conjecture: in this case it seems that NPC(n;S;P)=0 for all odd n, so only the even ones are listed. This is definitely not the case when the property P is replaced by its negation (see A242534).


LINKS

Table of n, a(n) for n=1..11.
S. Sykora, On NeighborProperty Cycles, Stan's Library, Volume V, 2014.


EXAMPLE

For n=4, the only cycle is {1,2,3,4}.
The two solutions for n=6 are: C_1={1,2,3,4,5,6} and C_2={1,4,3,2,5,6}.


MATHEMATICA

A242533[n_] := Count[Map[lpf, Map[j1f, Permutations[Range[2, 2 n]]]], 0]/2;
j1f[x_] := Join[{1}, x, {1}];
lpf[x_] := Length[Select[cpf[x], ! # &]];
cpf[x_] := Module[{i},
Table[CoprimeQ[x[[i]]  x[[i + 1]], x[[i]] + x[[i + 1]]], {i,
Length[x]  1}]];
Join[{1}, Table[A242533[n], {n, 2, 5}]]
(* OR, a less simple, but more efficient implementation. *)
A242533[n_, perm_, remain_] := Module[{opt, lr, i, new},
If[remain == {},
If[CoprimeQ[First[perm] + Last[perm], First[perm]  Last[perm]],
ct++];
Return[ct],
opt = remain; lr = Length[remain];
For[i = 1, i <= lr, i++,
new = First[opt]; opt = Rest[opt];
If[! CoprimeQ[Last[perm] + new, Last[perm]  new], Continue[]];
A242533[n, Join[perm, {new}],
Complement[Range[2, 2 n], perm, {new}]];
];
Return[ct];
];
];
Join[{1}, Table[ct = 0; A242533[n, {1}, Range[2, 2 n]]/2, {n, 2, 6}] ](* Robert Price, Oct 25 2018 *)


PROG

(C++) See the link.


CROSSREFS

Cf. A242519, A242520, A242521, A242522, A242523, A242524, A242525, A242526, A242527, A242528, A242529, A242530, A242531, A242532, A242534.
Sequence in context: A099903 A074426 A082636 * A273325 A035603 A126735
Adjacent sequences: A242530 A242531 A242532 * A242534 A242535 A242536


KEYWORD

nonn,hard,more


AUTHOR

Stanislav Sykora, May 30 2014


EXTENSIONS

a(10)a(11) from Fausto A. C. Cariboni, May 31 2017, Jun 01 2017


STATUS

approved



