login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A242526 Number of cyclic arrangements of S={1,2,...,n} such that the difference between any two neighbors is at most 4. 16
1, 1, 1, 3, 12, 36, 90, 214, 521, 1335, 3473, 9016, 23220, 59428, 152052, 389636, 999776, 2566517, 6586825, 16899574, 43352560, 111213798, 285319258, 732016006, 1878072638, 4818362046, 12361809384, 31714901077, 81366445061, 208750870961 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

a(n)=NPC(n;S;P) is the count of all neighbor-property cycles for a specific set S of n elements and a specific pair-property P. For more details, see the link and A242519.

LINKS

Andrew Howroyd, Table of n, a(n) for n = 1..100

S. Sykora, On Neighbor-Property Cycles, Stan's Library, Volume V, 2014.

FORMULA

Empirical: a(n) = 2*a(n-1)+a(n-2)-a(n-4)+9*a(n-5)+5*a(n-6)-a(n-7) -7*a(n-8) -10*a(n-9)+2*a(n-10)+2*a(n-11)+2*a(n-12)+4*a(n-13) -2*a(n-17) -a(n-18) for n>20. - Andrew Howroyd, Apr 08 2016

Empirical g.f.: x + (3-6*x-2*x^2-x^3+3*x^4-22*x^5-5*x^6+x^7+8*x^8 +14*x^9 -6*x^10+2*x^11-6*x^12-6*x^13 -3*x^15+x^16+3*x^17) / (1-2*x-x^2+x^4 -9*x^5 -5*x^6+x^7+7*x^8+10*x^9-2*x^10-2*x^11-2*x^12-4*x^13+2*x^17 +x^18). - Andrew Howroyd, Apr 08 2016

EXAMPLE

The 3 cycles of length n=4 are: {1,2,3,4},{1,2,4,3},{1,3,2,4}.

The first and the last of the 1335 such cycles of length n=10 are:

C_1={1,2,3,4,6,7,8,10,9,5}, C_1335={1,4,8,10,9,7,6,3,2,5}.

PROG

(C++) See the link.

CROSSREFS

Cf. A242519, A242520, A242521, A242522, A242523, A242524, A242525, A242527, A242528, A242529, A242530, A242531, A242532, A242533, A242534.

Sequence in context: A135190 A101069 A225259 * A167667 A215919 A027327

Adjacent sequences:  A242523 A242524 A242525 * A242527 A242528 A242529

KEYWORD

nonn

AUTHOR

Stanislav Sykora, May 27 2014

EXTENSIONS

a(22)-a(30) from Andrew Howroyd, Apr 08 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 26 22:14 EDT 2017. Contains 287168 sequences.