This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A242523 Number of cyclic arrangements of S={1,2,...,n} such that the difference between any two neighbors is at least 3. 16
 0, 0, 0, 0, 0, 0, 1, 11, 125, 1351, 15330, 184846, 2382084, 32795170, 481379278, 7513591430, 124363961357, 2176990766569, 40199252548280, 781143277669538, 15937382209774353, 340696424417421213, 7616192835573406931, 177723017354688250713, 4321711817908214684734 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,8 COMMENTS a(n)=NPC(n;S;P) is the count of all neighbor-property cycles for a specific set S of n elements and a specific pair-property P. For more details, see the link and A242519. LINKS Hiroaki Yamanouchi, Table of n, a(n) for n = 1..27 (terms a(1)-a(15) from Stanislav Sykora) S. Sykora, On Neighbor-Property Cycles, Stan's Library, Volume V, 2014. EXAMPLE The shortest cycle with this property has length n=7: {1,4,7,3,6,2,5}. MATHEMATICA A242523[n_] := Count[Map[lpf, Map[j1f, Permutations[Range[2, n]]]], 0]/2; j1f[x_] := Join[{1}, x, {1}]; lpf[x_] := Length[Select[Abs[Differences[x]], # < 3 &]]; Table[A242523[n], {n, 1, 10}] (* OR, a less simple, but more efficient implementation. *) A242523[n_, perm_, remain_] := Module[{opt, lr, i, new},    If[remain == {},      If[Abs[First[perm] - Last[perm]] >= 3, ct++];      Return[ct],      opt = remain; lr = Length[remain];      For[i = 1, i <= lr, i++,       new = First[opt]; opt = Rest[opt];       If[Abs[Last[perm] - new] < 3, Continue[]];       A242523[n, Join[perm, {new}],        Complement[Range[2, n], perm, {new}]];       ];      Return[ct];      ];    ]; Table[ct = 0; A242523[n, {1}, Range[2, n]]/2, {n, 1, 11}] (* Robert Price, Oct 24 2018 *) PROG (C++) See the link. CROSSREFS Cf. A242519, A242520, A242521, A242522, A242524, A242525, A242526, A242527, A242528, A242529, A242530, A242531, A242532, A242533, A242534. Sequence in context: A015594 A209605 A282755 * A015596 A163310 A240335 Adjacent sequences:  A242520 A242521 A242522 * A242524 A242525 A242526 KEYWORD nonn,hard AUTHOR Stanislav Sykora, May 27 2014 EXTENSIONS a(16)-a(25) from Hiroaki Yamanouchi, Aug 28 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 13 17:50 EST 2018. Contains 317149 sequences. (Running on oeis4.)