login
A242507
Number of compositions of n, where the difference between the number of odd parts and the number of even parts is 9.
2
1, 0, 9, 11, 45, 121, 243, 726, 1509, 3601, 8385, 17836, 40873, 87633, 188855, 409116, 859674, 1827160, 3832786, 7981398, 16644666, 34362355, 70866846, 145637147, 297814569, 608309130, 1237764177, 2512564769, 5090761029, 10286177231, 20750532587, 41778968976
OFFSET
9,3
COMMENTS
With offset 18 number of compositions of n, where the difference between the number of odd parts and the number of even parts is -9.
LINKS
FORMULA
Recurrence (for n>=13): (n-9)*(n+1)*(n+2)*(n+18)*(16*n^4 + 128*n^3 + 344*n^2 + 352*n - 104871)*a(n) = -2592*(n-10)*(n+1)*(n+3)*(n+17)*(2*n+3)*a(n-1) + 2*(n+2)*(16*n^7 + 272*n^6 + 2872*n^5 + 10928*n^4 - 103259*n^3 - 795505*n^2 - 7964385*n - 13572711)*a(n-2) + 2*(n+1)*(n+3)*(2*n+3)*(16*n^5 + 208*n^4 + 1008*n^3 + 3524*n^2 - 96349*n - 123786)*a(n-3) - (n-4)*(n+2)*(n+3)*(n+5)*(16*n^4 + 192*n^3 + 824*n^2 + 1488*n - 104031)*a(n-4). - Vaclav Kotesovec, May 20 2014
CROSSREFS
Column k=9 of A242498.
Sequence in context: A143465 A201999 A195309 * A116152 A215831 A195941
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 16 2014
STATUS
approved