%I #7 May 20 2014 02:44:41
%S 1,0,8,10,36,100,186,550,1122,2564,5940,12246,27560,58240,122642,
%T 262458,542243,1134944,2352136,4826980,9949352,20300312,41377116,
%U 84172508,170322099,344527304,694617960,1397219682,2807142612,5625453196,11258808682,22498804286
%N Number of compositions of n, where the difference between the number of odd parts and the number of even parts is 8.
%C With offset 16 number of compositions of n, where the difference between the number of odd parts and the number of even parts is -8.
%H Alois P. Heinz, <a href="/A242506/b242506.txt">Table of n, a(n) for n = 8..1000</a>
%F Recurrence (for n>=12): (n-8)*(n+16)*(2*n+1)*(2*n+3)*(n^4 + 6*n^3 + 11*n^2 + 6*n - 4096)*a(n) = -256*(n-9)*(n+1)*(n+15)*(2*n+1)*(2*n+5)*a(n-1) + 2*(2*n+3)*(2*n^7 + 27*n^6 + 242*n^5 + 549*n^4 - 9408*n^3 - 49916*n^2 - 462064*n - 606208)*a(n-2) + 2*(n+1)*(2*n+1)*(2*n+5)*(2*n^5 + 21*n^4 + 79*n^3 + 254*n^2 - 7608*n - 5760)*a(n-3) - (n-4)*(n+4)*(2*n+3)*(2*n+5)*(n^4 + 10*n^3 + 35*n^2 + 50*n - 4072)*a(n-4). - _Vaclav Kotesovec_, May 20 2014
%Y Column k=8 of A242498.
%K nonn
%O 8,3
%A _Alois P. Heinz_, May 16 2014