login
A242506
Number of compositions of n, where the difference between the number of odd parts and the number of even parts is 8.
2
1, 0, 8, 10, 36, 100, 186, 550, 1122, 2564, 5940, 12246, 27560, 58240, 122642, 262458, 542243, 1134944, 2352136, 4826980, 9949352, 20300312, 41377116, 84172508, 170322099, 344527304, 694617960, 1397219682, 2807142612, 5625453196, 11258808682, 22498804286
OFFSET
8,3
COMMENTS
With offset 16 number of compositions of n, where the difference between the number of odd parts and the number of even parts is -8.
LINKS
FORMULA
Recurrence (for n>=12): (n-8)*(n+16)*(2*n+1)*(2*n+3)*(n^4 + 6*n^3 + 11*n^2 + 6*n - 4096)*a(n) = -256*(n-9)*(n+1)*(n+15)*(2*n+1)*(2*n+5)*a(n-1) + 2*(2*n+3)*(2*n^7 + 27*n^6 + 242*n^5 + 549*n^4 - 9408*n^3 - 49916*n^2 - 462064*n - 606208)*a(n-2) + 2*(n+1)*(2*n+1)*(2*n+5)*(2*n^5 + 21*n^4 + 79*n^3 + 254*n^2 - 7608*n - 5760)*a(n-3) - (n-4)*(n+4)*(2*n+3)*(2*n+5)*(n^4 + 10*n^3 + 35*n^2 + 50*n - 4072)*a(n-4). - Vaclav Kotesovec, May 20 2014
CROSSREFS
Column k=8 of A242498.
Sequence in context: A302312 A245199 A303042 * A302879 A303527 A367893
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 16 2014
STATUS
approved