login
Numbers n such that antisigma(n) mod n = 0, where antisigma(n) = A024816(n) = sum of numbers less than n which do not divide n.
6

%I #9 Jun 16 2023 03:16:32

%S 1,2,24,4320,4680,26208,8910720,17428320,20427264,91963648,197064960,

%T 8583644160,10200236032,21857648640,57575890944,57629644800,

%U 206166804480,17116004505600,1416963251404800,15338300494970880

%N Numbers n such that antisigma(n) mod n = 0, where antisigma(n) = A024816(n) = sum of numbers less than n which do not divide n.

%C Numbers n such that antisigma(n) mod n = A229110(n) = 0.

%C If there are any odd multiply-perfect numbers, they are members of this sequence.

%C If there is no odd multiply-perfect number, then a(n) = A159907(n-1) for n >= 2.

%e 24 is in sequence because antisigma(24) mod 24 = 240 mod 24 = 0.

%o (Magma) [n: n in [1..1000000] | 0 eq ((n*(n+1))div 2 - SumOfDivisors(n)) mod n]

%Y Cf. A242480, A242481, A242482, A242483, A242485, A242486.

%K nonn

%O 1,2

%A _Jaroslav Krizek_, May 16 2014