login
A242473
Binomial(2p-1,p-1) modulo p^4, with p=prime(n).
3
3, 10, 126, 1716, 1332, 2198, 14740, 61732, 158172, 268280, 29792, 557184, 2343315, 2623732, 3218514, 5657327, 11911983, 12710937, 7218313, 12526886, 24119055, 18735483, 13151102, 19034164, 87616609
OFFSET
1,1
COMMENTS
A value of 1 indicates a Wolstenholme prime.
MATHEMATICA
Table[Mod[Binomial[2p-1, p-1], p^4], {p, Prime[Range[30]]}] (* Harvey P. Dale, Jun 26 2017 *)
PROG
(PARI) forprime(n=2, 10^2, m=(binomial(2*n-1, n-1)%n^4); print1(m, ", "));
(Python)
from __future__ import division
from sympy import isprime
A242473_list, b = [], 1
for n in range(1, 10**4):
if isprime(n):
A242473_list.append(b % n**4)
b = b*2*(2*n+1)//(n+1) # Chai Wah Wu, Jan 26 2016
CROSSREFS
Cf. A088164, A099905, A099906, A099907. Subsequence of A099908.
Sequence in context: A175079 A333430 A205389 * A282410 A290059 A062006
KEYWORD
nonn
AUTHOR
Felix Fröhlich, May 26 2014
STATUS
approved