login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A242451 Number T(n,k) of compositions of n in which the minimal multiplicity of parts equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows. 14
1, 0, 1, 0, 1, 1, 0, 3, 0, 1, 0, 6, 1, 0, 1, 0, 15, 0, 0, 0, 1, 0, 23, 7, 1, 0, 0, 1, 0, 53, 10, 0, 0, 0, 0, 1, 0, 94, 32, 0, 1, 0, 0, 0, 1, 0, 203, 31, 21, 0, 0, 0, 0, 0, 1, 0, 404, 71, 35, 0, 1, 0, 0, 0, 0, 1, 0, 855, 77, 91, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1648, 222, 105, 71, 0, 1, 0, 0, 0, 0, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

T(0,0) = 1 by convention. T(n,k) counts the compositions of n in which at least one part has multiplicity k and no part has a multiplicity smaller than k.

T(n,n) = T(2n,n) = 1.

T(3n,n) = A244174(n).

LINKS

Alois P. Heinz, Rows n = 0..140, flattened

EXAMPLE

T(5,1) = 15: [1,1,1,2], [1,1,2,1], [1,2,1,1], [2,1,1,1], [1,2,2], [2,1,2], [2,2,1], [1,1,3], [1,3,1], [3,1,1], [2,3], [3,2], [1,4], [4,1], [5].

T(6,2) = 7: [1,1,2,2], [1,2,1,2], [1,2,2,1], [2,1,1,2], [2,1,2,1], [2,2,1,1], [3,3].

T(6,3) = 1: [2,2,2].

Triangle T(n,k) begins:

  1;

  0,   1;

  0,   1,  1;

  0,   3,  0,  1;

  0,   6,  1,  0, 1;

  0,  15,  0,  0, 0, 1;

  0,  23,  7,  1, 0, 0, 1;

  0,  53, 10,  0, 0, 0, 0, 1;

  0,  94, 32,  0, 1, 0, 0, 0, 1;

  0, 203, 31, 21, 0, 0, 0, 0, 0, 1;

  0, 404, 71, 35, 0, 1, 0, 0, 0, 0, 1;

MAPLE

b:= proc(n, i, p, k) option remember; `if`(n=0, p!, `if`(i<1, 0,

       b(n, i-1, p, k) +add(b(n-i*j, i-1, p+j, k)/j!,

       j=max(1, k)..floor(n/i))))

    end:

T:= (n, k)-> b(n$2, 0, k) -`if`(n=0 and k=0, 0, b(n$2, 0, k+1)):

seq(seq(T(n, k), k=0..n), n=0..14);

MATHEMATICA

b[n_, i_, p_, k_] := b[n, i, p, k] = If[n == 0, p!, If[i < 1, 0, b[n, i - 1, p, k] + Sum[b[n - i*j, i - 1, p + j, k]/j!, {j, Max[1, k], Floor[n/i]}]]]; T[n_, k_] := b[n, n, 0, k] - If[n == 0 && k == 0, 0, b[n, n, 0, k + 1]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-Fran├žois Alcover, Jan 27 2015, after Alois P. Heinz *)

CROSSREFS

Columns k=0-10 give: A000007, A244164, A244165, A244166, A244167, A244168, A244169, A244170, A244171, A244172, A244173.

Row sums give A011782.

Cf. A242447 (the same for maximal multiplicity), A243978 (the same for partitions).

Sequence in context: A187253 A022904 A238341 * A262964 A135481 A180049

Adjacent sequences:  A242448 A242449 A242450 * A242452 A242453 A242454

KEYWORD

nonn,tabl,look

AUTHOR

Alois P. Heinz, May 15 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 17 12:57 EDT 2019. Contains 327131 sequences. (Running on oeis4.)