This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A242451 Number T(n,k) of compositions of n in which the minimal multiplicity of parts equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows. 14
 1, 0, 1, 0, 1, 1, 0, 3, 0, 1, 0, 6, 1, 0, 1, 0, 15, 0, 0, 0, 1, 0, 23, 7, 1, 0, 0, 1, 0, 53, 10, 0, 0, 0, 0, 1, 0, 94, 32, 0, 1, 0, 0, 0, 1, 0, 203, 31, 21, 0, 0, 0, 0, 0, 1, 0, 404, 71, 35, 0, 1, 0, 0, 0, 0, 1, 0, 855, 77, 91, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1648, 222, 105, 71, 0, 1, 0, 0, 0, 0, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS T(0,0) = 1 by convention. T(n,k) counts the compositions of n in which at least one part has multiplicity k and no part has a multiplicity smaller than k. T(n,n) = T(2n,n) = 1. T(3n,n) = A244174(n). LINKS Alois P. Heinz, Rows n = 0..140, flattened EXAMPLE T(5,1) = 15: [1,1,1,2], [1,1,2,1], [1,2,1,1], [2,1,1,1], [1,2,2], [2,1,2], [2,2,1], [1,1,3], [1,3,1], [3,1,1], [2,3], [3,2], [1,4], [4,1], [5]. T(6,2) = 7: [1,1,2,2], [1,2,1,2], [1,2,2,1], [2,1,1,2], [2,1,2,1], [2,2,1,1], [3,3]. T(6,3) = 1: [2,2,2]. Triangle T(n,k) begins:   1;   0,   1;   0,   1,  1;   0,   3,  0,  1;   0,   6,  1,  0, 1;   0,  15,  0,  0, 0, 1;   0,  23,  7,  1, 0, 0, 1;   0,  53, 10,  0, 0, 0, 0, 1;   0,  94, 32,  0, 1, 0, 0, 0, 1;   0, 203, 31, 21, 0, 0, 0, 0, 0, 1;   0, 404, 71, 35, 0, 1, 0, 0, 0, 0, 1; MAPLE b:= proc(n, i, p, k) option remember; `if`(n=0, p!, `if`(i<1, 0,        b(n, i-1, p, k) +add(b(n-i*j, i-1, p+j, k)/j!,        j=max(1, k)..floor(n/i))))     end: T:= (n, k)-> b(n\$2, 0, k) -`if`(n=0 and k=0, 0, b(n\$2, 0, k+1)): seq(seq(T(n, k), k=0..n), n=0..14); MATHEMATICA b[n_, i_, p_, k_] := b[n, i, p, k] = If[n == 0, p!, If[i < 1, 0, b[n, i - 1, p, k] + Sum[b[n - i*j, i - 1, p + j, k]/j!, {j, Max[1, k], Floor[n/i]}]]]; T[n_, k_] := b[n, n, 0, k] - If[n == 0 && k == 0, 0, b[n, n, 0, k + 1]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jan 27 2015, after Alois P. Heinz *) CROSSREFS Columns k=0-10 give: A000007, A244164, A244165, A244166, A244167, A244168, A244169, A244170, A244171, A244172, A244173. Row sums give A011782. Cf. A242447 (the same for maximal multiplicity), A243978 (the same for partitions). Sequence in context: A187253 A022904 A238341 * A262964 A135481 A180049 Adjacent sequences:  A242448 A242449 A242450 * A242452 A242453 A242454 KEYWORD nonn,tabl,look AUTHOR Alois P. Heinz, May 15 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 12:57 EDT 2019. Contains 327131 sequences. (Running on oeis4.)