login
A242438
a(n) is the result of factoring a(n-1) + 1 into primes, replacing each prime 2 with a 3, and taking the product of the resulting factors.
0
1, 3, 9, 15, 81, 123, 279, 945, 1419, 3195, 7191, 24273, 36411, 81927, 276507, 622143, 7086609, 10629915, 23917311, 612974547, 1379192733, 2068789101, 3103183653, 4654775481, 6982163223, 23564800881, 35347201323, 79531202979, 178945206705, 268417810059
OFFSET
1,2
EXAMPLE
The term after 123 is 279 because 123 + 1 = 124 = 31*2*2 and 31*3*3 = 279.
MATHEMATICA
r23[n_]:=Module[{f=FactorInteger[n+1]}, Times@@Flatten[Table[ #[[1]], #[[2]]]&/@ Transpose[Join[{f[[All, 1]]/.(2->3), f[[All, 2]]}]]]]; NestList[r23, 1, 30] (* Harvey P. Dale, Dec 11 2018 *)
PROG
(PARI) a=vector(30); a[1]=1; for(n=2, #a, f=factor(a[n-1]+1); if(f[1, 1]==2, f[1, 1]=3); a[n]=factorback(f)); a \\ Colin Barker, May 15 2014
(PARI) lista(nn) = {a = 1; for (n=1, nn, print1(a, ", "); a++; nd = valuation(a, 2); a *= 3^nd/2^nd; ); } \\ Michel Marcus, May 15 2014
CROSSREFS
Sequence in context: A323679 A038547 A348199 * A355716 A083556 A015664
KEYWORD
nonn
AUTHOR
J. Lowell, May 14 2014
EXTENSIONS
More terms from Colin Barker, May 14 2014
STATUS
approved