This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A242368 Primes p such that p + digitsum(p) = q^k for some prime q and k > 1 where digitsum(n) = A007953(n). 1
 2, 17, 347, 521, 10601, 28541, 29759, 32027, 39569, 58061, 62969, 100469, 109541, 120401, 130307, 205357, 398129, 426383, 434261, 829883, 896771, 923501, 935063, 1190261, 1216583, 1261109, 1559963, 1697771, 2105381, 2128649, 2505857, 2778851, 2886563, 2920649 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS With k>1 the number of entries is greatly reduced compared to simply allowing p+digsum(p) = q.  One could allow for k=1 to see how many entries could be found for a variation of this sequence. LINKS Michel Marcus, Table of n, a(n) for n = 1..181 EXAMPLE a(4)=521 because 521+5+2+1=529=23^2 and 23 is a prime. MATHEMATICA a242368[n_Integer] := Module[{p, pp}, p = Prime[n]; pp = p + Plus @@ IntegerDigits@p; If[And[Length@FactorInteger[pp] == 1,     Min[Last@Transpose[FactorInteger[pp]]] > 1], p, 0]]; Rest@Sort@DeleteDuplicates[a242368 /@ Range[10^6]] (* Michael De Vlieger, Aug 16 2014 *) PROG (PARI) dsum(n)=n=digits(n); sum(i=1, #n, n[i]) is(p)=isprimepower(p+dsum(p))>1 && isprime(p) forprime(p=2, 1e9, if(is(p), print1(p", "))) \\ Charles R Greathouse IV, Aug 16 2014 CROSSREFS Cf. A000040, A007953, A007605, A000961. Sequence in context: A007785 A201785 A204249 * A243509 A128159 A319591 Adjacent sequences:  A242365 A242366 A242367 * A242369 A242370 A242371 KEYWORD nonn,base AUTHOR J. M. Bergot, Aug 16 2014 EXTENSIONS More terms from Charles R Greathouse IV, Aug 16 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 19 18:49 EDT 2019. Contains 321330 sequences. (Running on oeis4.)