login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A242368 Primes p such that p + digitsum(p) = q^k for some prime q and k > 1 where digitsum(n) = A007953(n). 1
2, 17, 347, 521, 10601, 28541, 29759, 32027, 39569, 58061, 62969, 100469, 109541, 120401, 130307, 205357, 398129, 426383, 434261, 829883, 896771, 923501, 935063, 1190261, 1216583, 1261109, 1559963, 1697771, 2105381, 2128649, 2505857, 2778851, 2886563, 2920649 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

With k>1 the number of entries is greatly reduced compared to simply allowing p+digsum(p) = q.  One could allow for k=1 to see how many entries could be found for a variation of this sequence.

LINKS

Michel Marcus, Table of n, a(n) for n = 1..181

EXAMPLE

a(4)=521 because 521+5+2+1=529=23^2 and 23 is a prime.

MATHEMATICA

a242368[n_Integer] := Module[{p, pp}, p = Prime[n]; pp = p + Plus @@ IntegerDigits@p; If[And[Length@FactorInteger[pp] == 1,

    Min[Last@Transpose[FactorInteger[pp]]] > 1], p, 0]]; Rest@Sort@DeleteDuplicates[a242368 /@ Range[10^6]] (* Michael De Vlieger, Aug 16 2014 *)

PROG

(PARI) dsum(n)=n=digits(n); sum(i=1, #n, n[i])

is(p)=isprimepower(p+dsum(p))>1 && isprime(p)

forprime(p=2, 1e9, if(is(p), print1(p", "))) \\ Charles R Greathouse IV, Aug 16 2014

CROSSREFS

Cf. A000040, A007953, A007605, A000961.

Sequence in context: A007785 A201785 A204249 * A243509 A128159 A319591

Adjacent sequences:  A242365 A242366 A242367 * A242369 A242370 A242371

KEYWORD

nonn,base

AUTHOR

J. M. Bergot, Aug 16 2014

EXTENSIONS

More terms from Charles R Greathouse IV, Aug 16 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 19 18:49 EDT 2019. Contains 321330 sequences. (Running on oeis4.)