The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A242354 Number T(n,k) of four-colored rooted trees of order n and structure k; triangle T(n,k), n>=1, 1<=k<=A000081(n), read by rows. 1
 4, 16, 64, 40, 256, 160, 256, 80, 1024, 640, 1024, 320, 1024, 640, 544, 640, 140, 4096, 2560, 4096, 1280, 4096, 2560, 2176, 2560, 560, 4096, 2560, 4096, 1280, 4096, 2560, 2560, 1600, 2176, 1280, 224, 16384, 10240, 16384, 5120, 16384, 10240, 8704, 10240, 2240 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The underlying partitions of n-1 (cf. A000041) for the construction of the trees with n nodes are generated in descending order, the elements within a partition are sorted in ascending order, e.g., n = 1   {0} |-> () |-> 10_2 n = 2   {1} |-> (()) |-> 1100_2 n = 3   {2} > {1, 1} |-> ((())) > (()()) |-> 111000_2 > 110100_2 n = 4   {3} > {1, 2} > {1, 1, 1} |-> (((()))) > ((()())) > (()(())) > (()()()) |-> 11110000_2 > 11101000_2 > 11011000_2 > 11010100_2 The decimal equivalents of the binary encoded rooted trees in row n are the descending ordered elements of row n in A216648. REFERENCES G. Gruber, Entwicklung einer graphbasierten Methode zur Analyse von Hüpfsequenzen auf Butcherbäumen und deren Implementierung in Haskell, Diploma thesis, Marburg, 2011 Eva Kalinowski, Mott-Hubbard-Isolator in hoher Dimension, Dissertation, Marburg: Fachbereich Physik der Philipps-Universität, 2002. LINKS Martin Paech, Rows n = 1..10, flattened E. Kalinowski and W. Gluza, Evaluation of High Order Terms for the Hubbard Model in the Strong-Coupling Limit, arXiv:1106.4938, 2011 (Physical Review B 85, 045105, Jan 2012) E. Kalinowski and M. Paech, Table of four-colored Butcher trees B(n,k,m) up to order n = 4. M. Paech, E. Kalinowski, W. Apel, G. Gruber, R. Loogen, and E. Jeckelmann, Ground-state energy and beyond: High-accuracy results for the Hubbard model on the Bethe lattice in the strong-coupling limit, DPG Spring Meeting, Berlin, TT 45.91 (2012) EXAMPLE Let {h, u, d, p} be a set of four colors, corresponding to the four possible "states" of each tree node (lattice site) in the underlying physical problem, namely its occupation with no electron (hole), with one up-spin electron, with one down-spin electron, or with one up-spin and one down-spin electron (pair). (We consider each rooted tree as a cutout of the Bethe lattice in infinite dimensions.) Then for n = 1 with A000081(1) = 1   h(), u(), d(), p() are the 4 four-colored trees of the first and only structure k = 1 (sum is 4 = A136793(1)); for n = 2 with A000081(2) = 1   h(h()), h(u()), h(d()), h(p()),   u(h()), u(u()), u(d()), u(p()),   d(h()), d(u()), d(d()), d(p()),   p(h()), p(u()), p(d()), p(p()) are the 16 four-colored trees of the first and only structure k = 1 (sum is 16 = A136793(2)); for n = 3 with A000081(3) = 2   h(h(h())), h(h(u())), h(h(d())), h(h(p())),   h(u(h())), ...                               ..., p(d(p())),   p(p(h())), p(p(u())), p(p(d())), p(p(p())) are the 64 four-colored trees of the structure k = 1 and   h(h()h()), h(h()u()), h(h()d()), h(h()p()),   h(u()u()), h(u()d()), h(u()p()),   h(d()d()), h(d()p()),   h(p()p()),   ...,   p(h()h()), p(h()u()), p(h()d()), p(h()p()),   p(u()u()), p(u()d()), p(u()p()),   p(d()d()), p(d()p()),   p(p()p()) are the 40 four-colored trees of the structure k = 2 (sum is 104 = A136793(3)). Triangle T(n,k) begins: 4; 16; 64, 40; 256, 160, 256, 80; 1024, 640, 1024, 320, 1024, 640, 544, 640, 140; CROSSREFS Row sums give A136793. Row length is A000081. Total number of elements up to and including row n is A087803. Cf. A216648, A242353. Sequence in context: A073533 A330689 A061283 * A001264 A307138 A114399 Adjacent sequences:  A242351 A242352 A242353 * A242355 A242356 A242357 KEYWORD nonn,tabf AUTHOR Martin Paech, May 16 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 7 15:56 EDT 2020. Contains 333306 sequences. (Running on oeis4.)