login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A242306 Number of terms in the squares-greedy sum for n. 3
1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 2, 2, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 2, 3, 2, 2, 2, 2, 3, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,4

COMMENTS

Greedy sums and related numbers are defined at A242305.

LINKS

Clark Kimberling, Table of n, a(n) for n = 2..2000

EXAMPLE

n ... squares-greedy sum for n

1 ... (undefined)

2 ... 1 = 1

3 ... 1 = 1

4 ... 1 = 1

5 ... 5 = 4 + 1

6 ... 5 = 4 + 1

7 ... 5 = 4 + 1

8 ... 5 = 4 + 1

9 ... 5 = 4 + 1

10 .. 10 = 9 + 1

11 .. 10 = 9 + 1

12 .. 10 = 9 + 1

13 .. 13 =  9 + 4

14 .. 14 = 9 + 4 + 1

MATHEMATICA

z = 200;  s = Table[n^2, {n, 1, z}]; s1 = Table[n, {n, 1, z}]; t = Table[{s1[[n]], #, Total[#] == s1[[n]]} &[DeleteCases[-Differences[FoldList[If[#1 - #2 >= 0, #1 - #2, #1] &, s1[[n]],

Reverse[Select[s, # < s1[[n]] &]]]], 0]], {n, z}]

r[n_] := s1[[n]] - Total[t[[n]][[2]]];

tr = Table[r[n], {n, 2, z}]  (* A242305 *)

c = Table[Length[t[[n]][[2]]], {n, 2, z}] (* A242306 *)

f = 1 + Flatten[Position[tr, 0]]  (* A242307 *)  (* Peter J. C. Moses, May 06 2014 *)

CROSSREFS

Cf. A242305, A242307, A241833, A000027, A000290.

Sequence in context: A191291 A131841 A230261 * A245636 A171622 A111858

Adjacent sequences:  A242303 A242304 A242305 * A242307 A242308 A242309

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, May 11 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified April 21 21:03 EDT 2018. Contains 302877 sequences. (Running on oeis4.)