login
A242273
Numbers n such that n*2^n - 1 is a semiprime.
12
5, 7, 8, 9, 10, 12, 18, 20, 25, 32, 37, 39, 72, 80, 85, 90, 97, 142, 150, 159, 163, 168, 169, 186, 192, 211, 231, 272, 305, 349, 363, 369, 375, 463, 465, 615, 668, 672, 789, 797, 817, 859, 908, 938, 951, 1092, 1123
OFFSET
1,1
COMMENTS
The semiprimes of this form are: 159, 895, 2047, 4607, 10239, ... (A242115).
a(48) >= 1152. - Hugo Pfoertner, Jul 29 2019
FORMULA
A003261(a(n)) = A242115(n). - Amiram Eldar, Nov 27 2019
MATHEMATICA
Select[Range[1000], PrimeOmega[# 2^# - 1]==2&]
PROG
(Magma) IsSemiprime:=func<i | &+[d[2]: d in Factorization(i)] eq 2>; [n: n in [2..1000] | IsSemiprime(s) where s is n*2^n-1];
CROSSREFS
Cf. numbers n such that n*k^n - 1 is semiprime: this sequence (k=2), A242274 (k=3), A242335 (k=4), A242336 (k=5), A242337 (k=6), A242338 (k=7), A242339 (k=8), A242340 (k=9), A242341 (k=10).
Sequence in context: A370090 A164374 A072281 * A261917 A111339 A273786
KEYWORD
nonn,more,hard
AUTHOR
Vincenzo Librandi, May 12 2014
EXTENSIONS
a(28)-a(29) from Luke March, Aug 05 2015
a(30)-a(42) from Carl Schildkraut, Aug 18 2015
Corrected and extended by Luke March, Sep 01 2015
Missing terms a(26)-a(27) inserted by Amiram Eldar, Nov 27 2019
STATUS
approved