login
A242256
Primes that are not primes-greedy summable, as defined at A242252.
5
2, 3, 11, 17, 23, 29, 37, 41, 47, 53, 59, 67, 71, 79, 83, 89, 97, 101, 107, 113, 127, 131, 137, 157, 163, 167, 173, 179, 197, 211, 223, 227, 233, 239, 257, 263, 269, 277, 281, 307, 311, 317, 331, 337, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 439
OFFSET
1,1
COMMENTS
See A242252 for the definitions of greedy sum and summability. A242255 and A242256 partition the primes.
LINKS
EXAMPLE
n ... a(n) .... primes-greedy sum ( = a(n) - A242252(n) for n > 1)
1 ... 2 ....... (undefined)
2 ... 3 ........ 2
3 ... 11 ....... 7 + 3
4 ... 17 ....... 13 + 3
5 ... 23 ....... 19 + 3
MATHEMATICA
z = 200; s = Table[Prime[n], {n, 1, z}]; t = Table[{s[[n]], #, Total[#] == s[[n]]} &[ DeleteCases[-Differences[FoldList[If[#1 - #2 >= 0, #1 - #2, #1] &, s[[n]], Reverse[Select[s, # < s[[n]] &]]]], 0]], {n, z}]; r[n_] := s[[n]] - Total[t[[n]][[2]]]; tr = Table[r[n], {n, 2, z}] (* A242252 *)
c = Table[Length[t[[n]][[2]]], {n, 2, z}] (* A242253 *)
f = 1 + Flatten[Position[tr, 0]] (* A242254 *)
Prime[f] (* A242255 *)
f1 = Prime[Complement[Range[Max[f]], f]] (* A242256 *)
(* Peter J. C. Moses, May 06 2014 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 09 2014
STATUS
approved