login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A242249 Number A(n,k) of rooted trees with n nodes and k-colored non-root nodes; square array A(n,k), n>=0, k>=0, read by antidiagonals. 16
0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 2, 0, 0, 1, 3, 7, 4, 0, 0, 1, 4, 15, 26, 9, 0, 0, 1, 5, 26, 82, 107, 20, 0, 0, 1, 6, 40, 188, 495, 458, 48, 0, 0, 1, 7, 57, 360, 1499, 3144, 2058, 115, 0, 0, 1, 8, 77, 614, 3570, 12628, 20875, 9498, 286, 0, 0, 1, 9, 100, 966, 7284, 37476, 111064, 142773, 44947, 719, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,13

COMMENTS

From Vaclav Kotesovec, Aug 26 2014: (Start)

Column k > 0 is asymptotic to c(k) * d(k)^n / n^(3/2), where constants c(k) and d(k) are dependent only on k. Conjecture: d(k) ~ k * exp(1). Numerically:

d(1)   =   2.9557652856519949747148175... (A051491)

d(2)   =   5.6465426162329497128927135... (A245870)

d(3)   =   8.3560268792959953682760695...

d(4)   =  11.0699628777593263124193026...

d(5)   =  13.7856511100846851989303249...

d(6)   =  16.5022088446930015657112211...

d(7)   =  19.2192613290638657575973462...

d(8)   =  21.9366222112987115910888213...

d(9)   =  24.6541883249893084812976812...

d(10)  =  27.3718979186642404090999595...

d(100) = 272.0126359583480733207362718...

d(101) = 274.7309127032967881125015217...

d(200) = 543.8405620978790523837823296...

d(201) = 546.5588426492458787468860222...

d(101)-d(100) = 2.718276744...

d(201)-d(200) = 2.718280551...

(End)

LINKS

Alois P. Heinz, Antidiagonals n = 0..140, flattened

L. Foissy, Algebraic structures on typed decorated rooted trees, arXiv:1811.07572 (2018)

FORMULA

G.f. for column k: x*Product_{n>=1} 1/(1 - x^n)^(k*A(n,k)). - Geoffrey Critzer, Nov 13 2014

EXAMPLE

Square array A(n,k) begins:

  0,  0,    0,     0,      0,      0,       0,       0, ...

  1,  1,    1,     1,      1,      1,       1,       1, ...

  0,  1,    2,     3,      4,      5,       6,       7, ...

  0,  2,    7,    15,     26,     40,      57,      77, ...

  0,  4,   26,    82,    188,    360,     614,     966, ...

  0,  9,  107,   495,   1499,   3570,    7284,   13342, ...

  0, 20,  458,  3144,  12628,  37476,   91566,  195384, ...

  0, 48, 2058, 20875, 111064, 410490, 1200705, 2984142, ...

MAPLE

with(numtheory):

A:= proc(n, k) option remember; `if`(n<2, n, (add(add(d*

      A(d, k), d=divisors(j))*A(n-j, k)*k, j=1..n-1))/(n-1))

    end:

seq(seq(A(n, d-n), n=0..d), d=0..12);

MATHEMATICA

nn = 10; t[x_] := Sum[a[n] x^n, {n, 1, nn}]; Transpose[ Table[Flatten[ sol = SolveAlways[ 0 == Series[ t[x] - x Product[1/(1 - x^i)^(n a[i]), {i, 1, nn}], {x, 0, nn}], x]; Flatten[{0, Table[a[n], {n, 1, nn}]}] /. sol], {n, 0, nn}]] // Grid (* Geoffrey Critzer, Nov 11 2014 *)

A[n_, k_] := A[n, k] = If[n<2, n, Sum[Sum[d*A[d, k], {d, Divisors[j]}] *A[n-j, k]*k, {j, 1, n-1}]/(n-1)]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 04 2014, translated from Maple *)

PROG

(PARI) \\ ColGf gives column generating function

ColGf(N, k) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = k/n * sum(i=1, n, sumdiv(i, d, d*A[d]) * A[n-i+1] ) ); x*Ser(A)}

Mat(vector(8, k, concat(0, Col(ColGf(7, k-1))))) \\ Andrew Howroyd, May 12 2018

CROSSREFS

Columns k=0-10 give: A063524, A000081, A000151, A006964, A052763, A052788, A246235, A246236, A246237, A246238, A246239.

Rows n=0-3 give: A000004, A000012, A001477, A005449.

Lower diagonal gives A242375.

Cf. A255517, A256064.

Sequence in context: A136438 A059848 A036865 * A125226 A281790 A245254

Adjacent sequences:  A242246 A242247 A242248 * A242250 A242251 A242252

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, May 09 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 20:45 EST 2019. Contains 329779 sequences. (Running on oeis4.)