login
A242244
Primes p such that both p^2 + 2 and p^2 - 2 are semiprimes.
2
11, 17, 53, 73, 79, 83, 97, 251, 269, 281, 379, 389, 433, 461, 601, 631, 691, 739, 827, 929, 947, 983, 1033, 1087, 1187, 1303, 1423, 1483, 1531, 1637, 1709, 1847, 1879, 2447, 2473, 2683, 2833, 2843, 3301, 3463, 3557, 3719, 3727, 3779, 3833, 3907, 3931, 4157
OFFSET
1,1
COMMENTS
Primes p such that p^2 + 2 = 3q, where q is prime, and p^2 - 2 is semiprime.
LINKS
EXAMPLE
a(1) = 11 is prime: 11^2 + 2 = 123 = 3 * 41 which is semiprime: 11^2 - 2 = 119 = 7 * 17 which is also semiprime.
a(2) = 17 is prime: 17^2 + 2 = 291 = 3 * 97 which is semiprime: 17^2 - 2 = 287 = 7 * 41 which is also semiprime.
MAPLE
with(numtheory):A242244:= proc()if isprime(x) and bigomega(x^2+2)=2 and bigomega(x^2-2)=2 then RETURN (x); fi; end: seq(A242244 (), x=1..5000);
MATHEMATICA
A242244 = {}; Do[p = Prime[n]; If[PrimeOmega[p^2 + 2] == 2 && PrimeOmega[p^2 - 2] == 2, AppendTo[A242244, p]], {n, 2000}]; A242244
Select[Prime[Range[600]], PrimeOmega[#^2+{2, -2}]=={2, 2}&] (* Harvey P. Dale, Apr 07 2018 *)
PROG
(PARI) is(n)=isprime(n) && isprime((n^2+2)\3) && bigomega(n^2-2)==2 \\ Charles R Greathouse IV, May 15 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
K. D. Bajpai, May 09 2014
STATUS
approved