login
A242243
Semiprimes sp of the form p^2 + q + 1 where p and q are consecutive primes.
1
15, 33, 187, 309, 559, 1411, 1897, 2263, 2869, 3543, 6979, 10717, 11559, 11995, 22353, 32953, 39009, 54529, 57363, 58333, 66313, 77011, 80383, 113917, 120759, 124969, 147079, 158011, 167701, 175983, 177673, 237661, 241581, 253519, 299767, 310813, 376387, 381309
OFFSET
1,1
LINKS
EXAMPLE
a(1) = 15 = 3^2 + 5 + 1 = 3 * 5 is semiprime, 3 and 5 are consecutive primes.
a(2) = 33 = 5^2 + 7 + 1 = 3 * 11 is semiprime, 5 and 7 are consecutive primes.
MAPLE
with(numtheory): A242243:= proc()local k ; k:=(ithprime(x)^2+ithprime(x+1)+1); if bigomega(k)=2 then RETURN (k); fi; end: seq(A242243 (), x=1..500);
MATHEMATICA
Select[Table[Prime[n]^2 + Prime[n + 1] + 1, {n, 500}], PrimeOmega[#] == 2 &]
CROSSREFS
KEYWORD
nonn
AUTHOR
K. D. Bajpai, May 09 2014
STATUS
approved