login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A242225 Write the coefficient of x^n/n! in the expansion of (x/(exp(x)-1))^(1/2) as f(n)/g(n); sequence gives g(n). 6
1, 4, 48, 64, 1280, 3072, 86016, 49152, 2949120, 1310720, 11534336, 4194304, 1526726656, 2348810240, 12079595520, 3221225472, 73014444032, 51539607552, 137095356088320, 5772436045824, 3809807790243840, 725677674332160, 2023101395107840, 3166593487994880 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

For f(n) see A241885(n).

The old definition was "Denominator of (B_n)^(1/2) in the Cauchy type product (sometimes known as binomial transform) where B_n is the n-th Bernoulli number".

LINKS

Table of n, a(n) for n=0..23.

David Broadhurst, Relations between A241885/A242225, A222411/A222412, and A350194/A350154.

Jitender Singh, On an arithmetic convolution, arXiv:1402.0065 [math.NT], 2014.

FORMULA

Theorem: A241885(n)/A242225(n) = n!*A222411(n)/(A222412(n)*(-1)^n/(1-2*n)) = n!*A350194(n)/(A350154(n)*(2*n+1)). - David Broadhurst, Apr 23 2022 (see Link).

For any arithmetic function f and a positive integer k>1, define the k-th root of f to be the arithmetic function g such that g*g*...*g(k times)=f and is determined by the following recursive formula:

g(0)= f(0)^{1/m};

g(1)= f(1)/(mg(0)^(m-1));

g(k)= 1/(m g(0)^{m-1})*(f(k)-sum_{k_1+...+k_m=k,k_i<k} k!/( k_1!...k_m!)g(k_1)... g(k_m)), for k>=2.

This formula is applicable for any rational root of an arithmetic function with respect to the Cauchy type product.

EXAMPLE

For n=1, B_1=-1/2 and B_1^(1/2)=-1/4 so a(1)=4.

For n=6, B_6=1/6 and B_6^(1/2)=79/86016 so a(6)=86016.

MAPLE

g := proc(f, n) option remember; local g0, m; g0 := sqrt(f(0));

if n=0 then g0 else if n=1 then 0 else add(binomial(n, m)*g(f, m)*g(f, n-m), m=1..n-1) fi; (f(n)-%)/(2*g0) fi end:

a := n -> denom(g(bernoulli, n));

seq(a(n), n=0..23);

MATHEMATICA

a := 1

g[0] := Sqrt[f[0]]

f[k_] := BernoulliB[k]

g[1] := f[1]/(2 g[0]^1);

g[k_] := (f[k] -

Sum[Binomial[k, m] g[m] g[k - m], {m, 1, k - 1}])/(2 g[0])

Table[Denominator[Factor[g[k]]], {k, 0, 15}] // TableForm

CROSSREFS

Cf. A241885.

Cf. also A222411/A222412, A350194/A350154.

Sequence in context: A358889 A225987 A178429 * A157818 A048608 A275033

Adjacent sequences: A242222 A242223 A242224 * A242226 A242227 A242228

KEYWORD

nonn,frac

AUTHOR

Jitender Singh, May 08 2014

EXTENSIONS

Simpler definition from N. J. A. Sloane, Apr 24 2022 at the suggestion of David Broadhurst.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 5 17:56 EST 2023. Contains 360086 sequences. (Running on oeis4.)