login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A242225 Write the coefficient of x^n/n! in the expansion of (x/(exp(x)-1))^(1/2) as f(n)/g(n); sequence gives g(n). 7
1, 4, 48, 64, 1280, 3072, 86016, 49152, 2949120, 1310720, 11534336, 4194304, 1526726656, 2348810240, 12079595520, 3221225472, 73014444032, 51539607552, 137095356088320, 5772436045824, 3809807790243840, 725677674332160, 2023101395107840, 3166593487994880 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
For f(n) see A241885(n).
The old definition was "Denominator of (B_n)^(1/2) in the Cauchy type product (sometimes known as binomial transform) where B_n is the n-th Bernoulli number".
The Nørlund polynomials N(a, n, x) with parameter a = 1/2 evaluated at x = 0 give the rational values. - Peter Luschny, Feb 18 2024
LINKS
Jitender Singh, On an arithmetic convolution, arXiv:1402.0065 [math.NT], 2014.
FORMULA
Theorem: A241885(n)/A242225(n) = n!*A222411(n)/(A222412(n)*(-1)^n/(1-2*n)) = n!*A350194(n)/(A350154(n)*(2*n+1)). - David Broadhurst, Apr 23 2022 (see Link).
For any arithmetic function f and a positive integer k>1, define the k-th root of f to be the arithmetic function g such that g*g*...*g(k times)=f and is determined by the following recursive formula:
g(0)= f(0)^{1/m};
g(1)= f(1)/(mg(0)^(m-1));
g(k)= 1/(m g(0)^{m-1})*(f(k)-sum_{k_1+...+k_m=k,k_i<k} k!/( k_1!...k_m!)g(k_1)... g(k_m)), for k>=2.
This formula is applicable for any rational root of an arithmetic function with respect to the Cauchy type product.
EXAMPLE
For n=1, B_1=-1/2 and B_1^(1/2)=-1/4 so a(1)=4.
For n=6, B_6=1/6 and B_6^(1/2)=79/86016 so a(6)=86016.
MAPLE
g := proc(f, n) option remember; local g0, m; g0 := sqrt(f(0));
if n=0 then g0 else if n=1 then 0 else add(binomial(n, m)*g(f, m)*g(f, n-m), m=1..n-1) fi; (f(n)-%)/(2*g0) fi end:
a := n -> denom(g(bernoulli, n));
seq(a(n), n=0..23);
MATHEMATICA
a := 1
g[0] := Sqrt[f[0]]
f[k_] := BernoulliB[k]
g[1] := f[1]/(2 g[0]^1);
g[k_] := (f[k] - Sum[Binomial[k, m] g[m] g[k - m], {m, 1, k - 1}])/(2 g[0])
Table[Denominator[Factor[g[k]]], {k, 0, 15}] // TableForm
(* Alternative: *)
Table[Denominator@NorlundB[n, 1/2, 0], {n, 0, 23}] (* Peter Luschny, Feb 18 2024 *)
CROSSREFS
Cf. A241885.
Sequence in context: A225987 A178429 A370417 * A157818 A362402 A048608
KEYWORD
nonn,frac
AUTHOR
Jitender Singh, May 08 2014
EXTENSIONS
Simpler definition from N. J. A. Sloane, Apr 24 2022 at the suggestion of David Broadhurst.
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 13:36 EDT 2024. Contains 371970 sequences. (Running on oeis4.)