OFFSET
1,2
COMMENTS
Conjecture: a(n) is prime except for n = 1, 7.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..184
Z.-W. Sun, New observations on primitive roots modulo primes, arXiv preprint arXiv:1405.0290 [math.NT], 2014.
EXAMPLE
a(4) = 5 since H(4) = 25/12 == 0 (mod 5), but none of H(1) = 1, H(2) = 3/2 and H(3) = 11/6 is congruent to 0 modulo 5.
MATHEMATICA
h[n_]:=Numerator[HarmonicNumber[n]]
f[n_]:=FactorInteger[h[n]]
p[n_]:=Table[Part[Part[f[n], k], 1], {k, 1, Length[f[n]]}]
Do[If[h[n]<2, Goto[cc]]; Do[Do[If[Mod[h[i], Part[p[n], k]]==0, Goto[aa]], {i, 1, n-1}]; Print[n, " ", Part[p[n], k]]; Goto[bb]; Label[aa]; Continue, {k, 1, Length[p[n]]}]; Label[cc]; Print[n, " ", 1]; Label[bb]; Continue, {n, 1, 40}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, May 08 2014
STATUS
approved