login
A242203
Numbers n such that n*3^n + 1 is semiprime.
7
1, 3, 10, 16, 20, 22, 24, 34, 39, 56, 63, 108, 128, 194, 202, 212, 214, 218, 314, 364, 662, 722
OFFSET
1,2
COMMENTS
The semiprimes of this form are 4, 82, 590491, 688747537, 69735688021, 690383311399, 6778308875545, 567024177788663347, 158049650967740074414, 29307467449532190083956645177, ...
a(23) >= 894. - Hugo Pfoertner, Aug 03 2019
MATHEMATICA
Select[Range[130], PrimeOmega[# 3^# + 1] == 2 &]
PROG
(Magma) IsSemiprime:=func<i | &+[d[2]: d in Factorization(i)] eq 2>; [n: n in [1..130] | IsSemiprime(s) where s is n*3^n+1];
(PARI) isok(n) = bigomega(n*3^n + 1)==2; \\ Michel Marcus, Mar 30 2019
CROSSREFS
Cf. numbers n such that n*k^n + 1 is semiprime: A242175 (k=2), this sequence (k=3), A242204 (k=4), A242205 (k=5), A242269 (k=6), A242270 (k=7), A242271 (k=8), A242272 (k=9), A216378 (k=10).
Sequence in context: A367257 A092827 A087904 * A093516 A246302 A358792
KEYWORD
nonn,more
AUTHOR
Vincenzo Librandi, May 10 2014
EXTENSIONS
a(14)-a(20) from Luke March, Jul 30 2015
a(21)-a(22) from Daniel Suteu, Mar 30 2019
STATUS
approved