login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A242170 Least prime divisor of T(n) which does not divide any T(k) with k < n, or 1 if such a primitive prime divisor of T(n) does not exist, where T(n) is the n-th central trinomial coefficient given by A002426. 11
1, 3, 7, 19, 17, 47, 131, 41, 43, 1279, 503, 113, 2917, 569, 198623, 14083, 26693, 201611, 42998951, 41931041, 52635749, 1296973, 169097, 1451, 1304394227, 107, 233, 173, 2062225210273, 719, 191, 31551555041, 6301, 563, 3769, 967, 9539, 5073466546857451, 4542977, 9739 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Conjecture: (i) a(n) > 1 for all n > 1.

(ii) For any integer n > 3, the n-th Motzkin number M(n) given by A001006 has a prime divisor which does not divide any M(k) with k < n.

LINKS

Zhi-Wei Sun, Table of n, a(n) for n = 1..168

EXAMPLE

a(11) = 503 since T(11) = 3*17*503 with the prime divisor 503 dividing none of T(1),...,T(10), but 3 divides T(2) = 3 and 17 divides T(5) = 51.

MATHEMATICA

T[n_]:=Sum[Binomial[n, 2k]*Binomial[2k, k], {k, 0, n/2}]

f[n_]:=FactorInteger[T[n]]

p[n_]:=Table[Part[Part[f[n], k], 1], {k, 1, Length[f[n]]}]

Do[If[T[n]<2, Goto[cc]]; Do[Do[If[Mod[T[i], Part[p[n], k]]==0, Goto[aa]], {i, 1, n-1}];

Print[n, " ", Part[p[n], k]]; Goto[bb]; Label[aa]; Continue, {k, 1, Length[p[n]]}];

Label[cc]; Print[n, " ", 1]; Label[bb]; Continue, {n, 1, 40}]

CROSSREFS

Cf. A000040, A001006, A002426, A242169, A242171, A242173.

Sequence in context: A075609 A083439 A151858 * A032675 A089749 A032667

Adjacent sequences:  A242167 A242168 A242169 * A242171 A242172 A242173

KEYWORD

nonn

AUTHOR

Zhi-Wei Sun, May 05 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 20 05:07 EST 2019. Contains 329323 sequences. (Running on oeis4.)