OFFSET
0,3
LINKS
Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..70
FORMULA
a(n) = A242153(2n,n).
a(n) ~ 6*sqrt(3) / (Pi^3 * exp(Pi^2/12)) * (24/Pi^2)^n * n!. - Vaclav Kotesovec, Aug 28 2014
EXAMPLE
a(0) = 1: the empty sequence.
a(1) = 1: [0,0].
a(2) = 3: [0,0,0,1], [0,0,1,1], [0,1,1,1].
a(3) = 20: [0,0,0,0,1,0], [0,0,0,0,1,2], [0,0,0,1,0,0], [0,0,0,1,1,0], [0,0,0,1,1,2], [0,0,0,1,2,2], [0,0,1,0,0,0], [0,0,1,1,0,0], [0,0,1,1,1,0], [0,0,1,1,1,2], [0,0,1,1,2,2], [0,0,1,2,2,2], [0,1,0,0,0,0], [0,1,1,0,0,0], [0,1,1,1,0,0], [0,1,1,1,1,0], [0,1,1,1,1,2], [0,1,1,1,2,2], [0,1,1,2,2,2], [0,1,2,2,2,2].
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Expand[Sum[ If[j == i, x, 1]*b[n - 1, j, t + If[j > i, 1, 0]], {j, 0, t + 1}]]]; a[n_] := Coefficient[b[2n, -1, -1], x, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 10 2015, after A242153 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, May 05 2014
STATUS
approved