login
A242119
Primes modulo 18.
14
2, 3, 5, 7, 11, 13, 17, 1, 5, 11, 13, 1, 5, 7, 11, 17, 5, 7, 13, 17, 1, 7, 11, 17, 7, 11, 13, 17, 1, 5, 1, 5, 11, 13, 5, 7, 13, 1, 5, 11, 17, 1, 11, 13, 17, 1, 13, 7, 11, 13, 17, 5, 7, 17, 5, 11, 17, 1, 7, 11, 13, 5, 1, 5, 7, 11, 7, 13, 5, 7, 11, 17, 7, 13, 1, 5
OFFSET
1,1
LINKS
FORMULA
Sum_{i=1..n} a(i) ~ 9n. The derivation is the same as in the formula in A039715. - Jerzy R Borysowicz, Apr 27 2022
MATHEMATICA
Mod[Prime[Range[100]], 18]
PROG
(Magma) [p mod(18): p in PrimesUpTo(500)];
(Sage) [mod(p, 18) for p in primes(500)] # Bruno Berselli, May 05 2014
CROSSREFS
Cf. sequences of the type Primes mod k: A039701 (k=3), A039702 (k=4), A039703 (k=5), A039704 (k=6), A039705 (k=7), A039706 (k=8), A038194 (k=9), A007652 (k=10), A039709 (k=11), A039710 (k=12), A039711 (k=13), A039712 (k=14), A039713 (k=15), A039714 (k=16), A039715 (k=17), this sequence (k=18), A033633 (k=19), A242120(k=20), A242121 (k=21), A242122 (k=22), A229786 (k=23), A229787 (k=24), A242123 (k=25), A242124 (k=26), A242125 (k=27), A242126 (k=28), A242127 (k=29), A095959 (k=30), A110923 (k=100).
Sequence in context: A176548 A020625 A033633 * A308505 A338938 A249823
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, May 05 2014
STATUS
approved