login
Triangle read by rows: T(n,k) = number of pairs (x,y) in {1..n}X{1..n} with gcd(x,y) = k.
5

%I #7 Sep 20 2021 07:10:20

%S 1,3,1,7,1,1,11,3,1,1,19,3,1,1,1,23,7,3,1,1,1,35,7,3,1,1,1,1,43,11,3,

%T 3,1,1,1,1,55,11,7,3,1,1,1,1,1,63,19,7,3,3,1,1,1,1,1,83,19,7,3,3,1,1,

%U 1,1,1,1,91,23,11,7,3,3,1,1,1,1,1,1,115,23

%N Triangle read by rows: T(n,k) = number of pairs (x,y) in {1..n}X{1..n} with gcd(x,y) = k.

%C T(n,1) = A018805(n);

%C sum(T(n,k): k = 1..n) = A000290(n);

%C sum(T(n,k): k = 2..n) = A100613(n);

%C T(floor(n/k),1) = A018805(n).

%H Reinhard Zumkeller, <a href="/A242114/b242114.txt">Rows n = 1..125 of table, flattened</a>

%F T(n,k) = A018805(A010766(n,k));

%e T(4,1) = #{(1,1), (1,2), (1,3), (1,4), (2,1), (2,3), (3,1), (3,2), (3,4), (4,1), (4,3)} = 11;

%e T(4,2) = #{(2,2), (2,4), (4,2)} = 3;

%e T(4,3) = #{(3,3)} = 1;

%e T(4,4) = #{(4,4)} = 1.

%e The triangle begins: row sums

%e . 1: 1 1

%e . 2: 3 1 4

%e . 3: 7 1 1 9

%e . 4: 11 3 1 1 16

%e . 5: 19 3 1 1 1 25

%e . 6: 23 7 3 1 1 1 36

%e . 7: 35 7 3 1 1 1 1 49

%e . 8: 43 11 3 3 1 1 1 1 64

%e . 9: 55 11 7 3 1 1 1 1 1 81

%e . 10: 63 19 7 3 3 1 1 1 1 1 100

%e . 11: 83 19 7 3 3 1 1 1 1 1 1 121

%e . 12: 91 23 11 7 3 3 1 1 1 1 1 1 144

%e . 13: 115 23 11 7 3 3 1 1 1 1 1 1 1 169

%e . 14: 127 35 11 7 3 3 3 1 1 1 1 1 1 1 196

%e . 15: 143 35 19 7 7 3 3 1 1 1 1 1 1 1 1 225

%e . 16: 159 43 19 11 7 3 3 3 1 1 1 1 1 1 1 1 256

%e . 17: 191 43 19 11 7 3 3 3 1 1 1 1 1 1 1 1 1 289

%e . 18: 203 55 23 11 7 7 3 3 3 1 1 1 1 1 1 1 1 1 324 .

%t T[n_, k_] := 2 Total[EulerPhi[Range[Quotient[n, k]]]] - 1;

%t Table[T[n, k], {n, 1, 18}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Sep 20 2021 *)

%o (Haskell)

%o a242114 n k = a242114_tabl !! (n-1) !! (k-1)

%o a242114_row n = a242114_tabl !! (n-1)

%o a242114_tabl = map (map a018805) a010766_tabl

%K nonn,tabl

%O 1,2

%A _Reinhard Zumkeller_, May 04 2014