login
A242081
Nim sequence of game on n counters whose legal moves are removing some number of counters in A242079.
0
0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 2
OFFSET
0,5
COMMENTS
For all n, a(n)=0, a(n)=1, or a(n)=2.
For all n, a(n)=0 if and only if a(n+1)=1.
This sequence is aperiodic if and only if A242079 is infinite.
REFERENCES
E. R. Berlekamp, J. H. Conway and R. K. Guy, "Winning Ways", pp. 83-86
LINKS
N. Fox, Aperiodic Subtraction Games, Talk given at the Rutgers Experimental Mathematics Seminar, May 01 2014.
CROSSREFS
Cf. A242079.
Sequence in context: A029410 A242082 A159917 * A374429 A190487 A054528
KEYWORD
nonn
AUTHOR
Nathan Fox, May 03 2014
STATUS
approved