login
A242059
lpf_3(A242057(n)-1), where lpf_3(n) = lpf(n/3^t) (cf. A020639) such that 3^t (t>=0) is the maximal power of 3 which divides n.
4
1, 5, 7, 5, 1, 11, 5, 13, 5, 7, 5, 7, 5, 23, 5, 1, 5, 7, 5, 11, 5, 37, 5, 7, 5, 43, 7, 5, 47, 11, 5, 17, 5, 53, 7, 5, 13, 5, 61, 5, 7, 5, 67, 7, 5, 11, 71, 5, 13, 5, 7, 5, 1, 11, 5, 7, 5, 7, 5, 31, 5, 5, 7, 5, 103, 5, 11, 17, 5, 7, 37, 5, 113, 11, 7, 5, 13, 5
OFFSET
1,2
COMMENTS
An analog of A242033.
LINKS
MATHEMATICA
lpf[n_]:=lpf[n]=First[First[FactorInteger[n]]];
lpf3[n_]:=lpf3[n]=If[#==1, 1, lpf[#]]&[n/3^IntegerExponent[n, 3]]
Map[lpf3[#-1]&, Select[Range[4, 300, 2], lpf3[#-1]<lpf3[#-3]&]](* Peter J. C. Moses, Aug 13 2014 *)
PROG
(PARI) lpf3(n)=m=n/3^valuation(n, 3); if(m>1, factor(m)[1, 1], 1)
apply(n->lpf3(n-1), select(n->lpf3(n-1)<lpf3(n-3), vector(200, x, 2*x))) \\ Jens Kruse Andersen, Aug 19 2014
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Aug 13 2014
EXTENSIONS
More terms from Peter J. C. Moses, Aug 13 2014
STATUS
approved