login
A242057
Even numbers n for which lpf_3(n-1) < lpf_3(n-3), where lpf_3(n) = lpf(n/3^t) (cf. A020639) such that 3^t (t>=0) is the maximal power of 3 which divides n.
6
10, 16, 22, 26, 28, 34, 36, 40, 46, 50, 56, 64, 66, 70, 76, 82, 86, 92, 96, 100, 106, 112, 116, 120, 126, 130, 134, 136, 142, 144, 146, 154, 156, 160, 162, 166, 170, 176, 184, 186, 190, 196, 202, 204, 206, 210, 214, 216, 222, 226, 232, 236, 244, 254, 256, 260
OFFSET
1,1
COMMENTS
An analog of A245024.
LINKS
MATHEMATICA
lpf[n_]:=lpf[n]=First[First[FactorInteger[n]]];
lpf3[n_]:=lpf3[n]=If[#==1, 1, lpf[#]]&[n/3^IntegerExponent[n, 3]]
Select[Range[4, 300, 2], lpf3[#-1]<lpf3[#-3]&](* Peter J. C. Moses, Aug 13 2014 *)
PROG
(PARI) lpf3(n)=m=n/3^valuation(n, 3); if(m>1, factor(m)[1, 1], 1)
select(n->lpf3(n-1)<lpf3(n-3), vector(200, x, 2*x)) \\ Jens Kruse Andersen, Aug 19 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Aug 13 2014
EXTENSIONS
More terms from Peter J. C. Moses, Aug 13 2014
STATUS
approved