login
A242047
Decimal expansion of the asymptotic growth rate of the number of odd coefficients in Pascal "sextinomial" triangle mod 2, where coefficients are from (1+x+x^2+x^3+x^4+x^5)^n.
2
8, 1, 9, 4, 6, 9, 4, 6, 2, 1, 6, 5, 5, 4, 0, 1, 4, 6, 5, 9, 5, 9, 3, 7, 6, 8, 4, 3, 7, 7, 2, 8, 5, 5, 9, 8, 6, 1, 5, 1, 2, 4, 6, 2, 3, 5, 4, 3, 1, 4, 1, 2, 0, 9, 3, 4, 7, 1, 1, 4, 6, 7, 7, 5, 7, 8, 5, 6, 7, 0, 3, 2, 5, 0, 0, 8, 1, 1, 7, 9, 4, 1, 6, 6, 7, 6, 7, 6, 7, 8, 7, 9, 3, 5, 8, 1, 0, 9, 6, 6, 7, 4, 7, 4, 6
OFFSET
0,1
LINKS
Steven Finch, Pascal Sebah and Zai-Qiao Bai, Odd Entries in Pascal's Trinomial Triangle (arXiv:0802.2654) p. 12.
FORMULA
log(abs(mu))/log(2) - 1, where mu is the root of x^6 - 4*x^5 + x^4 - x^3 + 8*x^2 + 11*x + 8 with maximum modulus.
EXAMPLE
0.819469462165540146595937684377285598615124623543141209347...
MATHEMATICA
mu = Sort[Table[Root[x^6 - 4*x^5 + x^4 - x^3 + 8*x^2 + 11*x + 8, x, n], {n, 1, 5}], N[Abs[#1]] < N[Abs[#2]] &] // Last; RealDigits[Log[mu]/Log[2] - 1, 10, 104] // First
CROSSREFS
Cf. A242208 (1+x+x^2)^n, A242021 (1+x+x^3)^n, A242022 (1+x+x^2+x^3+x^4)^n, A241002 (1+x+x^4)^n.
Sequence in context: A286253 A198674 A168321 * A176455 A225667 A021126
KEYWORD
nonn,cons
AUTHOR
STATUS
approved