login
A241990
Decimal expansion of 'delta', a constant arising in the asymptotics of the regularized product of the Fibonacci numbers.
0
8, 9, 9, 2, 1, 2, 6, 8, 0, 7, 8, 5, 5, 0, 0, 8, 8, 6, 2, 5, 7, 6, 9, 8, 8, 3, 8, 7, 7, 5, 2, 8, 8, 1, 8, 2, 4, 3, 5, 0, 4, 5, 4, 1, 1, 7, 0, 6, 8, 4, 8, 4, 9, 8, 1, 7, 2, 6, 5, 6, 1, 5, 1, 4, 9, 4, 7, 5, 0, 8, 1, 8, 8, 1, 8, 6, 9, 7, 0, 9, 6, 1, 3, 2, 7, 1, 5, 9, 5, 5, 8, 3, 6, 8, 9, 3, 9, 9, 8, 3, 5, 4, 1
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.5 Fibonacci factorials, p. 10.
LINKS
FORMULA
delta = 5^(1/4)*exp(-log(5)^2/(8*log(phi)))*c/phi^(1/12), where phi is the golden ratio and c is the Fibonacci factorial constant (c = A062073 = 1.226742...).
EXAMPLE
0.899212680785500886257698838775288182435045411706848498172656...
MATHEMATICA
c = QPochhammer[-1/GoldenRatio^2]; delta = 5^(1/4)*Exp[-Log[5]^2/(8*Log[GoldenRatio])]*c/GoldenRatio^(1/12); RealDigits[delta, 10, 103] // First
CROSSREFS
Cf. A062073.
Sequence in context: A244959 A377999 A345987 * A358519 A256923 A347219
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved