login
A241959
Primes p such that p+2, p+4, p+6, p+8, p+10 are semiprimes.
1
211, 1381, 3089, 5087, 10399, 18803, 26903, 27031, 31583, 41161, 47189, 49081, 53759, 62939, 63949, 76801, 87383, 93739, 98491, 107509, 109397, 113341, 128099, 143093, 158699, 182747, 186889, 193727, 197507, 201413, 204331, 209477, 239087, 252949, 255989, 256079
OFFSET
1,1
COMMENTS
Each term in the sequence is prime p which yields 5 semiprimes in arithmetic progression with common difference of 2.
LINKS
EXAMPLE
a(1) = 211 is prime: 213, 215, 217, 219 and 221 are semiprimes.
a(2) = 1381 is prime: 1383, 1385, 1387, 1389 and 1391 are semiprimes.
MAPLE
with(numtheory): A241959:= proc() local p; p:=ithprime(x); if bigomega(p+2)=2 and bigomega(p+4)=2 and bigomega(p+6)=2 and bigomega(p+8)=2 and bigomega(p+10)=2 then RETURN (p); fi; end: seq(A241959 (), x=1..100000);
CROSSREFS
KEYWORD
nonn
AUTHOR
K. D. Bajpai, May 03 2014
STATUS
approved