

A241911


After a(1)=1, numbers 1 .. bigomega(n), followed by numbers 1 .. bigomega(n+1), etc., where bigomega(n)=A001222(n) is the number of prime factors of n (with repetition).


3



1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 2, 1, 2, 3, 4, 1, 1, 2, 3, 1, 1, 2, 3, 1, 2, 1, 2, 1, 1, 2, 3, 4, 1, 2, 1, 2, 1, 2, 3, 1, 2, 3, 1, 1, 2, 3, 1, 1, 2, 3, 4, 5, 1, 2, 1, 2, 1, 2, 1, 2, 3, 4, 1, 1, 2, 1, 2, 1, 2, 3, 4, 1, 1, 2, 3, 1, 1, 2, 3, 1, 2, 3, 1, 2, 1, 1, 2, 3, 4, 5, 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 1, 1, 2, 3, 4, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,5


LINKS

Antti Karttunen, Table of n, a(n) for n = 1..10000


FORMULA

a(1)=1, a(n) = n  A022559(A082288(n)1)  1.


EXAMPLE

Viewed as an irregular table, the sequence is constructed as:
"Row"
[1] 1; (by convention, a(1)=1)
[2] 1; (because bigomega(2)=1, we have here terms from 1 to 1)
[3] 1; (same with 3, bigomega(3)=1)
[4] 1, 2; (as bigomega(4)=2, we have terms from 1 to 2)
[5] 1;
[6] 1, 2;
[7] 1;
[8] 1, 2, 3; (as bigomega(8)=3, we have terms from 1 to 3).
etc.


PROG

(Scheme, with Antti Karttunen's IntSeqlibrary)
(define (A241911 n) (if (= n 1) 1 ( n (A022559 ( (A082288 n) 1)) 1)))


CROSSREFS

One more than A241910.
Cf. A022559, A082288, A241915.
Sequence in context: A240061 A012257 A162320 * A335221 A136610 A326371
Adjacent sequences: A241908 A241909 A241910 * A241912 A241913 A241914


KEYWORD

nonn,tabf


AUTHOR

Antti Karttunen, May 01 2014


STATUS

approved



