

A241910


After a(1)=0, numbers 0 .. bigomega(n)1, followed by numbers 0 .. bigomega(n+1)1, etc., where bigomega(n)=A001222(n) is the number of prime factors of n (with repetition).


3



0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 2, 0, 1, 0, 1, 0, 0, 1, 2, 0, 0, 1, 0, 1, 0, 1, 2, 3, 0, 0, 1, 2, 0, 0, 1, 2, 0, 1, 0, 1, 0, 0, 1, 2, 3, 0, 1, 0, 1, 0, 1, 2, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 3, 4, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 0, 0, 1, 0, 1, 0, 1, 2, 3, 0, 0, 1, 2, 0, 0, 1, 2, 0, 1, 2, 0, 1, 0, 0, 1, 2, 3, 4, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 0, 1, 2, 3, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,12


LINKS

Antti Karttunen, Table of n, a(n) for n = 1..10000


FORMULA

a(1)=0, a(n) = n  A022559(A082288(n)1)  2.


EXAMPLE

Viewed as an irregular table, the sequence is constructed as:
"Row"
[1] 0; (by convention, a(1)=0)
[2] 0; (because bigomega(2)=1, we have here terms from 0 to 0)
[3] 0; (same with 3, bigomega(3)=1)
[4] 0, 1; (as bigomega(4)=2, we have terms from 0 to 21)
[5] 0;
[6] 0, 1;
[7] 0;
[8] 0, 1, 2; (as bigomega(8)=3, we have terms from 0 to 31).
etc.


PROG

(Scheme, with Antti Karttunen's IntSeqlibrary)
(define (A241910 n) (if (= n 1) 0 ( n (+ 2 (A022559 ( (A082288 n) 1))))))


CROSSREFS

One less than A241911.
Cf. A022559, A082288, A112798, A241914.
Sequence in context: A070095 A060951 A115525 * A065717 A070092 A307837
Adjacent sequences: A241907 A241908 A241909 * A241911 A241912 A241913


KEYWORD

nonn,tabf


AUTHOR

Antti Karttunen, May 01 2014


STATUS

approved



