login
A241867
Number of compositions of n such that the smallest part has multiplicity seven.
2
1, 0, 8, 8, 44, 80, 236, 513, 1238, 2744, 6160, 13384, 28846, 61228, 128513, 266668, 548185, 1116580, 2255452, 4521198, 8998844, 17792361, 34962224, 68305274, 132724871, 256587512, 493665604, 945497642, 1803122075, 3424720416, 6479635254, 12214748337
OFFSET
7,3
LINKS
Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 7..1000
FORMULA
a(n) ~ n^7 * ((1+sqrt(5))/2)^(n-15) / (5^4 * 7!). - Vaclav Kotesovec, May 02 2014
MAPLE
b:= proc(n, s) option remember; `if`(n=0, 1,
`if`(n<s, 0, expand(add(b(n-j, s)*x, j=s..n))))
end:
a:= proc(n) local k; k:= 7;
add((p->add(coeff(p, x, i)*binomial(i+k, k),
i=0..degree(p)))(b(n-j*k, j+1)), j=1..n/k)
end:
seq(a(n), n=7..40);
MATHEMATICA
b[n_, s_] := b[n, s] = If[n == 0, 1, If[n < s, 0, Expand[Sum[b[n - j, s]*x, {j, s, n}]]]]; a[n_] := With[{k = 7}, Sum[Function[{p}, Sum[Coefficient[p, x, i]*Binomial[i + k, k], {i, 0, Exponent[p, x]}]][b[n - j*k, j + 1]], {j, 1, n/k}]]; Table[a[n], {n, 7, 40}] (* Jean-François Alcover, Feb 09 2015, after Maple *)
CROSSREFS
Column k=7 of A238342.
Sequence in context: A278846 A339323 A240037 * A243124 A103744 A151782
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Apr 30 2014
STATUS
approved