

A241845


a(1)=1; for n >1 a(n) is the smallest prime divisor of the number obtained from concatenation of 1 and the first n1 composites.


5



1, 2, 2, 2, 37, 2, 2, 2, 5, 2, 2, 2, 27793, 2, 2, 3, 2, 29, 2, 2, 2, 19, 2, 5, 2, 2, 1468910121415161820212224252627283032333435363839, 2, 2, 2, 5, 2, 2, 3, 2, 127, 2, 2, 5, 2, 3, 2, 2, 2, 3, 2, 3, 2, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

a(1)=1, and for n > 1 a(n) is the smallest prime divisor of the number obtained from the concatenation of A018252(j), j=1, ..., n.  Wolfdieter Lang, May 07 2014


LINKS

Jinyuan Wang, Table of n, a(n) for n = 1..185


EXAMPLE

1 U 4 = 14 and its divisors are 1, 2, 7, 14. Then a(2) = 2.
14 U 6 = 146 and its divisors are 1, 2, 73, 146. Then a(3) = 2.
146 U 8 = 1468 and its divisors are 1, 2, 4, 734, 367, 1468. Then a(4) = 2.
1468 U 9 = 14689 and its divisors are 1, 37, 397, 14689. Then a(5) = 37. Etc.


MAPLE

with(numtheory):
T:=proc(t) local x, y; x:=t; y:=0; while x>0 do x:=trunc(x/10); y:=y+1; od; end:
P:=proc(q) local a, b, n; b:=1; print(1); for n from 2 to q do if not isprime(n) then b:=n+b*10^T(n); a:=sort([op(divisors(b))]); print(a[2]);
fi; od; end: P(10^6); # Paolo P. Lava, Apr 30 2014


CROSSREFS

Cf. A018252, A075019, A104644, A132934.
Sequence in context: A147975 A083148 A318166 * A254131 A175910 A257662
Adjacent sequences: A241842 A241843 A241844 * A241846 A241847 A241848


KEYWORD

nonn,base


AUTHOR

Paolo P. Lava, Apr 30 2014


EXTENSIONS

More terms from Jinyuan Wang, Jun 27 2020


STATUS

approved



