%I #47 Sep 08 2022 08:46:07
%S 9,21,49,33,77,121,45,105,165,225,57,133,209,285,361,69,161,253,345,
%T 437,529,81,189,297,405,513,621,729,93,217,341,465,589,713,837,961,
%U 105,245,385,525,665,805,945,1085,1225,117,273,429,585,741,897,1053,1209,1365,1521
%N Triangle read by rows: T(n,k) = (4*n+3)*(4*k+3).
%C A016838(n) first diagonal.
%C A085027(n) second diagonal.
%C A017629(n) column k=0.
%C Row sums give the second bisection of A002414: 9, 70, 231, 540, 1045, 1794, 2835, 4216, ... [_Bruno Berselli_, May 08 2014]
%H Vincenzo Librandi, <a href="/A241747/b241747.txt">Rows n = 0..100, flattened</a>
%e Triangle begins:
%e n\k | 0 1 2 3 4 5 6 7 8 9
%e ----|--------------------------------------------------------
%e 0 | 9;
%e 1 | 21, 49;
%e 2 | 33, 77, 121;
%e 3 | 45, 105, 165, 225;
%e 4 | 57, 133, 209, 285, 361;
%e 5 | 69, 161, 253, 345, 437, 529;
%e 6 | 81, 189, 297, 405, 513, 621, 729;
%e 7 | 93, 217, 341, 465, 589, 713, 837, 961;
%e 8 | 105, 245, 385, 525, 665, 805, 945, 1085, 1225;
%e 9 | 117, 273, 429, 585, 741, 897, 1053, 1209, 1365, 1521;
%e .....
%t t[n_, k_] := (4 n + 3) (4 k + 3); Table[t[n, k], {n, 0, 10}, {k, n}] // Flatten
%o (Magma) [(4*n+3)*(4*k+3): k in [0..n], n in [0..15]]; /* or, as triangle: */ [[(4*n+3)*(4*k+3): k in [0..n]]: n in [0..10]];
%Y Cf. A002145, A004767, A016838, A017629, A085027.
%K nonn,tabl,easy
%O 0,1
%A _Vincenzo Librandi_, Apr 29 2014
%E Edited by _Alois P. Heinz_ and _Bruno Berselli_, May 08 2014