login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A241742 Number of partitions p of n such that (number of numbers in p of form 3k+2) > (number of numbers in p of form 3k). 3
0, 0, 1, 1, 2, 3, 5, 6, 9, 12, 18, 22, 31, 41, 54, 70, 95, 120, 156, 202, 259, 325, 418, 524, 659, 826, 1032, 1274, 1581, 1949, 2397, 2932, 3592, 4367, 5307, 6430, 7783, 9370, 11288, 13550, 16233, 19399, 23179, 27579, 32812, 38955, 46155, 54572, 64524, 76051 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Each number in p is counted once, regardless of its multiplicity.

LINKS

Table of n, a(n) for n=0..49.

FORMULA

a(n) + A241740(n) + A241841(n) = A000041(n) for n >= 0.

EXAMPLE

a(8) counts these 9 partitions:  8, 521, 5111, 422, 4211, 2222, 22211, 221111, 2111111.

MATHEMATICA

z = 40; f[n_] := f[n] = IntegerPartitions[n]; s[k_, p_] := Count[Mod[DeleteDuplicates[p], 3], k];

Table[Count[f[n], p_ /; s[2, p] < s[0, p]], {n, 0, z}]  (* A241740 *)

Table[Count[f[n], p_ /; s[2, p] == s[0, p]], {n, 0, z}] (* A241741 *)

Table[Count[f[n], p_ /; s[2, p] > s[0, p]], {n, 0, z}]  (* A241742 *)

CROSSREFS

Cf. A241737, A241740, A241741, A241743.

Sequence in context: A035948 A258939 A244747 * A212584 A166048 A240306

Adjacent sequences:  A241739 A241740 A241741 * A241743 A241744 A241745

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Apr 28 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 19:10 EDT 2019. Contains 324198 sequences. (Running on oeis4.)