login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A241719 Number T(n,k) of compositions of n into distinct parts with exactly k descents; triangle T(n,k), n>=0, 0<=k<=max(floor((sqrt(1+8*n)-3)/2),0), read by rows. 12
1, 1, 1, 2, 1, 2, 1, 3, 2, 4, 6, 1, 5, 7, 1, 6, 11, 2, 8, 16, 3, 10, 31, 15, 1, 12, 36, 16, 1, 15, 55, 29, 2, 18, 71, 41, 3, 22, 101, 65, 5, 27, 147, 144, 32, 1, 32, 188, 179, 35, 1, 38, 245, 269, 63, 2, 46, 327, 382, 93, 3, 54, 421, 549, 148, 5, 64, 540, 739, 205, 7 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Alois P. Heinz, Rows n = 0..500, flattened

EXAMPLE

T(6,0) = 4: [6], [2,4], [1,5], [1,2,3].

T(6,1) = 6: [5,1], [4,2], [3,1,2], [1,3,2], [2,1,3], [2,3,1].

T(6,2) = 1: [3,2,1].

T(7,0) = 5: [7], [3,4], [2,5], [1,6], [1,2,4].

T(7,1) = 7: [6,1], [4,3], [5,2], [2,1,4], [1,4,2], [2,4,1], [4,1,2].

T(7,2) = 1: [4,2,1].

Triangle T(n,k) begins:

00:   1;

01:   1;

02:   1;

03:   2,   1;

04:   2,   1;

05:   3,   2;

06:   4,   6,   1;

07:   5,   7,   1;

08:   6,  11,   2;

09:   8,  16,   3;

10:  10,  31,  15,  1;

11:  12,  36,  16,  1;

12:  15,  55,  29,  2;

13:  18,  71,  41,  3;

14:  22, 101,  65,  5;

15:  27, 147, 144, 32, 1;

MAPLE

g:= proc(u, o) option remember; `if`(u+o=0, 1, expand(

      add(g(u+j-1, o-j)  , j=1..o)+

      add(g(u-j, o+j-1)*x, j=1..u)))

    end:

b:= proc(n, i) option remember; local m; m:= i*(i+1)/2;

      `if`(n>m, 0, `if`(n=m, x^i,

      expand(b(n, i-1) +`if`(i>n, 0, x*b(n-i, i-1)))))

    end:

T:= n-> (p-> (q-> seq(coeff(q, x, i), i=0..degree(q)))(add(

         coeff(p, x, k)*g(0, k), k=0..degree(p))))(b(n$2)):

seq(T(n), n=0..20);

MATHEMATICA

g[u_, o_] := g[u, o] = If[u+o == 0, 1, Expand[Sum[g[u+j-1, o-j], {j, 1, o}] + Sum[g[u-j, o+j-1]*x, {j, 1, u}]]]; b[n_, i_] := b[n, i] = Module[{m}, m = i*(i+1)/2; If[n>m, 0, If[n == m, x^i, Expand[b[n, i-1] + If[i>n, 0, x*b[n-i, i-1]]]]]]; T[n_] := Function [p, Function[q, Table[Coefficient[q, x, i], {i, 0, Exponent[q, x]}]][Sum[Coefficient[p, x, k]*g[0, k], {k, 0, Exponent[p, x]}]]][b[n, n]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-Fran├žois Alcover, Apr 28 2014, after Alois P. Heinz *)

CROSSREFS

Columns k=0-10 give: A000009, A241720, A241721, A241722, A241723, A241724, A241725, A241726, A241727, A241728, A241729.

Row sums give A032020.

T(A000217(k+1)-1,k-1) = A000041(k) for k>0.

Cf. A052146.

Sequence in context: A161282 A226517 A185214 * A269572 A029198 A029175

Adjacent sequences:  A241716 A241717 A241718 * A241720 A241721 A241722

KEYWORD

nonn,tabf,look

AUTHOR

Alois P. Heinz, Apr 27 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 27 08:13 EST 2020. Contains 332300 sequences. (Running on oeis4.)