login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A241701 Number T(n,k) of Carlitz compositions of n with exactly k descents; triangle T(n,k), n>=0, 0<=k<=floor(n/3), read by rows. 14
1, 1, 1, 2, 1, 2, 2, 3, 4, 4, 8, 2, 5, 13, 5, 6, 21, 12, 8, 33, 27, 3, 10, 50, 53, 11, 12, 73, 98, 31, 15, 106, 174, 78, 5, 18, 150, 296, 175, 22, 22, 209, 486, 363, 72, 27, 289, 781, 715, 204, 8, 32, 393, 1222, 1342, 510, 43, 38, 529, 1874, 2421, 1168, 159 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

No two adjacent parts of a Carlitz composition are equal.

LINKS

Alois P. Heinz, Rows n = 0..250, flattened

FORMULA

Sum_{k=0..floor(n/3)} (k+1) * T(n,k) = A285994(n) (for n>0).

EXAMPLE

T(6,0) = 4: [6], [1,5], [2,4], [1,2,3].

T(6,1) = 8: [4,2], [5,1], [3,1,2], [1,3,2], [1,4,1], [2,3,1], [2,1,3], [1,2,1,2].

T(6,2) = 2: [3,2,1], [2,1,2,1].

T(7,0) = 5: [7], [3,4], [1,6], [2,5], [1,2,4].

T(7,1) = 13: [4,3], [6,1], [5,2], [2,1,4], [4,1,2], [1,4,2], [2,3,2], [3,1,3], [1,5,1], [2,4,1], [1,2,3,1], [1,3,1,2], [1,2,1,3].

T(7,2) = 5: [4,2,1], [2,1,3,1], [3,1,2,1], [1,3,2,1], [1,2,1,2,1].

Triangle T(n,k) begins:

00:   1;

01:   1;

02:   1;

03:   2,   1;

04:   2,   2;

05:   3,   4;

06:   4,   8,   2;

07:   5,  13,   5;

08:   6,  21,  12;

09:   8,  33,  27,   3;

10:  10,  50,  53,  11;

11:  12,  73,  98,  31;

12:  15, 106, 174,  78,   5;

13:  18, 150, 296, 175,  22;

14:  22, 209, 486, 363,  72;

15:  27, 289, 781, 715, 204, 8;

MAPLE

b:= proc(n, i) option remember; `if`(n=0, 1, expand(

      add(`if`(j=i, 0, b(n-j, j)*`if`(j<i, x, 1)), j=1..n)))

    end:

T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):

seq(T(n), n=0..20);

MATHEMATICA

b[n_, i_] := b[n, i] = If[n == 0, 1, Expand[Sum[If[j == i, 0, b[n-j, j]*If[j<i, x, 1]], {j, 1, n}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Feb 13 2015, after Alois P. Heinz *)

CROSSREFS

Columns k=0-10 give: A000009, A241691, A241692, A241693, A241694, A241695, A241696, A241697, A241698, A241699, A241700.

Row sums give A003242.

T(3n,n) = A000045(n+1).

T(3n+1,n) = A129715(n) for n>0.

Cf. A238344, A285994.

Sequence in context: A244788 A078660 A239239 * A060177 A238212 A255723

Adjacent sequences:  A241698 A241699 A241700 * A241702 A241703 A241704

KEYWORD

nonn,tabf

AUTHOR

Alois P. Heinz, Apr 27 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 23:00 EST 2019. Contains 319365 sequences. (Running on oeis4.)