login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A241675 a(n) = |{0 < k < n/2: k is a Fibonacci number with x^2 == k (mod n) for no integer x}|. 1
0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 1, 3, 2, 2, 3, 3, 2, 4, 3, 3, 4, 2, 1, 4, 4, 3, 4, 4, 3, 5, 2, 5, 4, 2, 5, 4, 4, 4, 3, 5, 2, 5, 4, 5, 6, 2, 2, 6, 4, 5, 4, 5, 5, 5, 5, 5, 6, 4, 3, 5, 3, 3, 6, 6, 6, 5, 5, 3, 5, 6, 3, 7, 4, 4, 5, 6, 7, 5, 2, 7 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,8

COMMENTS

a(n) > 0 for all n > 4 if and only if the conjecture in A241568 holds.

In fact, if n > 0 is a multiple of 4, then x^2 == F(3) = 2 (mod n) for no integer x. If n > 4 is composite with an odd prime divisor p, then by the conjecture in A241568 there should exist a Fibonacci number k < p <= n/2 such that x^2 == k (mod p) for no integer x and hence x^2 == k (mod n) for no integer x.

LINKS

Zhi-Wei Sun, Table of n, a(n) for n = 1..10000

Z.-W. Sun, New observations on primitive roots modulo primes, arXiv preprint arXiv:1405.0290 [math.NT], 2014.

EXAMPLE

a(5) = 1 since x^2 == F(3) = 2 (mod 5) for no integer x, but 1^2 == F(1) = F(2) = 1 (mod 5), where F(n) denotes the n-th Fibonacci number given by A000045.

a(7) = 1 since x^2 == F(4) = 3 (mod 7) for no integer x.

a(22) = 2 since there is no integer x such that x^2 == F(3) = 2 (mod 22) or x^2 == F(6) = 8 (mod 22).

a(23) = 1 since x^2 == F(5) = 5 (mod 23) for no integer x.

MATHEMATICA

f[k_]:=Fibonacci[k]

Do[m=0; Do[If[f[k]>=n/2, Goto[bb]]; Do[If[Mod[i^2, n]==f[k], Goto[aa]], {i, 0, n/2}]; m=m+1; Label[aa]; Continue, {k, 2, (n+1)/2}]; Label[bb]; Print[n, " ", m]; Continue, {n, 1, 80}]

CROSSREFS

Cf. A000045, A000290, A241568, A241604, A241605.

Sequence in context: A257079 A260372 A037180 * A091222 A316506 A294884

Adjacent sequences:  A241672 A241673 A241674 * A241676 A241677 A241678

KEYWORD

nonn

AUTHOR

Zhi-Wei Sun, Apr 27 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 16:17 EDT 2019. Contains 328223 sequences. (Running on oeis4.)