OFFSET
0,4
COMMENTS
Each number in p is counted once, regardless of its multiplicity.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
FORMULA
EXAMPLE
a(6) counts these 8 partitions: 51, 411, 33, 321, 3111, 2211, 21111, 111111.
MATHEMATICA
z = 30; f[n_] := f[n] = IntegerPartitions[n]; s0[p_] := Count[Mod[DeleteDuplicates[p], 2], 0];
s1[p_] := Count[Mod[DeleteDuplicates[p], 2], 1];
Table[Count[f[n], p_ /; s0[p] < s1[p]], {n, 0, z}] (* A241636 *)
Table[Count[f[n], p_ /; s0[p] <= s1[p]], {n, 0, z}] (* A241637 *)
Table[Count[f[n], p_ /; s0[p] == s1[p]], {n, 0, z}] (* A241638 *)
Table[Count[f[n], p_ /; s0[p] >= s1[p]], {n, 0, z}] (* A241639 *)
Table[Count[f[n], p_ /; s0[p] > s1[p]], {n, 0, z}] (* A241640 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 27 2014
STATUS
approved