login
A241629
Number of compositions of n with exactly four descents.
3
5, 37, 189, 751, 2558, 7762, 21577, 55867, 136478, 317416, 707817, 1521755, 3168262, 6410970, 12646075, 24378923, 46028497, 85269218, 155238256, 278130152, 490983234, 854910432, 1469679627, 2496560526, 4193815403, 6971437570, 11474937414, 18712755604
OFFSET
12,1
LINKS
Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 12..1000
EXAMPLE
a(12) = 5: [3,2,1,3,2,1], [2,1,2,1,3,2,1], [2,1,3,2,1,2,1], [3,2,1,2,1,2,1], [2,1,2,1,2,1,2,1].
MAPLE
b:= proc(n, i) option remember;
`if`(n=0, 1, convert(series(add(b(n-j, j)*
`if`(j<i, x, 1), j=1..n), x, 5), polynom))
end:
a:= n-> coeff(b(n, 0), x, 4):
seq(a(n), n=12..50);
MATHEMATICA
k = 4;
b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[b[n - j, j]*
If[j < i, x, 1], {j, n}] + O[x]^(k + 1)];
a[n_] := SeriesCoefficient[b[n, 0], {x, 0, k}];
a /@ Range[12, 50] (* Jean-François Alcover, Aug 27 2021, after Maple code *)
CROSSREFS
Column k=4 of A238343 and of A238344.
Sequence in context: A270326 A269815 A270931 * A273539 A095924 A270019
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Apr 26 2014
STATUS
approved