login
A241622
Number of length 7+2 0..n arrays with no consecutive three elements summing to more than n.
1
41, 556, 4175, 21631, 86828, 289248, 835812, 2159025, 5093737, 11151140, 22925695, 44678543, 83149600, 148659968, 256576512, 429221457, 698321649, 1108104700, 1719162599, 2613217519, 3898939484, 5718981280, 8258412500, 11754751905
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = (131/60480)*n^9 + (131/3360)*n^8 + (3137/10080)*n^7 + (347/240)*n^6 + (12407/2880)*n^5 + (4097/480)*n^4 + (169957/15120)*n^3 + (7963/840)*n^2 + (487/105)*n + 1.
Conjectures from Colin Barker, Oct 30 2018: (Start)
G.f.: x*(41 + 146*x + 460*x^2 - 19*x^3 + 283*x^4 - 209*x^5 + 120*x^6 - 45*x^7 + 10*x^8 - x^9) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>10.
(End)
EXAMPLE
Some solutions for n=5:
..3....2....1....1....2....0....2....2....1....4....3....0....0....3....1....2
..0....1....1....1....0....2....0....1....2....1....0....2....5....0....2....2
..0....1....2....2....0....2....1....1....1....0....1....0....0....0....0....1
..0....0....2....1....0....1....2....1....0....1....1....1....0....1....2....2
..2....4....0....2....3....1....2....1....3....0....0....0....1....0....0....1
..1....0....0....0....1....3....0....0....1....2....1....1....0....1....2....2
..2....0....2....0....1....0....0....3....0....0....3....1....1....0....0....1
..0....0....2....1....3....2....0....0....3....0....0....0....4....2....3....0
..3....2....1....1....0....3....4....2....2....3....1....3....0....3....2....4
CROSSREFS
Row 7 of A241619.
Sequence in context: A208048 A298839 A301399 * A276251 A298627 A078947
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 26 2014
STATUS
approved