

A241548


Number of partitions p of n such that (number of numbers of the form 3k+2 in p) is a part of p.


3



0, 0, 0, 1, 1, 2, 4, 7, 8, 15, 21, 29, 42, 60, 76, 107, 144, 186, 246, 326, 409, 532, 683, 856, 1083, 1374, 1698, 2121, 2644, 3244, 3998, 4930, 5995, 7316, 8927, 10782, 13043, 15778, 18932, 22729, 27289, 32549, 38833, 46316, 54951, 65172, 77290, 91239
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,6


COMMENTS

Each number in p is counted once, regardless of its multiplicity.


LINKS

Table of n, a(n) for n=0..47.


EXAMPLE

a(6) counts these 4 partitions: 51, 321, 2211, 21111.


MATHEMATICA

z = 30; f[n_] := f[n] = IntegerPartitions[n]; s[k_, p_] := Count[Mod[DeleteDuplicates[p], 3], k]
Table[Count[f[n], p_ /; MemberQ[p, s[0, p]]], {n, 0, z}] (* A241546 *)
Table[Count[f[n], p_ /; MemberQ[p, s[1, p]]], {n, 0, z}] (* A241547 *)
Table[Count[f[n], p_ /; MemberQ[p, s[2, p]]], {n, 0, z}] (* A241548 *)


CROSSREFS

Cf. A241546, A241547.
Sequence in context: A018265 A056694 A090606 * A019539 A327099 A045594
Adjacent sequences: A241545 A241546 A241547 * A241549 A241550 A241551


KEYWORD

nonn,easy


AUTHOR

Clark Kimberling, Apr 26 2014


STATUS

approved



