login
A241545
Number of partitions p of n such that (number of odd numbers in p) is a part of p.
2
0, 1, 1, 2, 2, 4, 5, 8, 10, 17, 22, 31, 42, 59, 79, 106, 138, 181, 241, 305, 397, 499, 647, 794, 1021, 1249, 1595, 1921, 2435, 2914, 3678, 4366, 5469, 6464, 8064, 9469, 11734, 13737, 16957, 19754, 24267, 28188, 34482, 39929, 48622, 56158, 68143, 78485, 94831
OFFSET
0,4
COMMENTS
Each number in p is counted once, regardless of its multiplicity.
EXAMPLE
a(6) counts these 5 partitions: 411, 321, 2211, 21111, 111111.
MATHEMATICA
z = 30; f[n_] := f[n] = IntegerPartitions[n]; s0[p_] := Count[Mod[DeleteDuplicates[p], 2], 0]; s1[p_] :=
Count[Mod[DeleteDuplicates[p], 2], 1];
Table[Count[f[n], p_ /; MemberQ[p, s0[p]]], {n, 0, z}] (* A241544 *)
Table[Count[f[n], p_ /; MemberQ[p, s1[p]]], {n, 0, z}] (* A241545 *)
CROSSREFS
Cf. A241544.
Sequence in context: A325831 A240451 A206138 * A157162 A109434 A371840
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 26 2014
STATUS
approved